

Energy Fuels Resources (USA) Inc. 225 Union Blvd. Suite 600 Lakewood, CO, US, 80228 303 974 2140

www.energyfuels.com

May 19, 2014

Sent VIA OVERNIGHT DELIVERY

Mr. Rusty Lundberg Director Division of Radiation Control Utah Department of Environmental Quality 195 North 1950 West P.O. Box 144850 Salt Lake City, UT 84114-4820 DRC-2014-003501

Re:

Transmittal of 1st Quarter 2014 Routine Chloroform Monitoring Report

UDEQ Docket No. UGW-20-01 White Mesa Uranium Mill

Dear Mr. Lundberg:

Enclosed are two copies of the White Mesa Uranium Mill Chloroform Monitoring Report for the 1st Quarter of 2014 as required by the Notice of Violation and Groundwater Corrective Action Order, UDEQ Docket No. UGW-20-01 as well as two CDs each containing a word searchable electronic copy of the report.

If you should have any questions regarding this report please contact me.

Yours very truly,

ENERGY FUELS RESOURCES (USA) INC.

Kathy Weinel

Quality Assurance Manager

CC:

David C. Frydenlund Harold R. Roberts David E. Turk Dan Hillsten Frank Filas

White Mesa Uranium Mill

Chloroform Monitoring Report

State of Utah
Notice of Violation and Groundwater Corrective Action Order UDEQ
Docket No. UGW-20-01

1st Quarter (January through March) 2014

Prepared by:

Energy Fuels Resources (USA) Inc. 225 Union Boulevard, Suite 600 Lakewood, CO 80228

May 19, 2014

TABLE OF CONTENTS

	NTRODUCTION	
2.0	CHLOROFORM MONITORING	1
2.1	Samples and Measurements Taken During the Quarter	1
2.1.	.1 TW4-32, TW4-33, and TW4-34	1
2.1.	.2 Chloroform Monitoring	2
2.1.	,	
2.1.	0	
2.2	Sampling Methodology and Equipment and Decontamination Procedures	
2.2.		
2.2.		
2.3	Field Data	
2.4	Depth to Groundwater Data and Water Table Contour Map	
2.5	Laboratory Results	
2.5.	1,5	
2.5.		
	QUALITY ASSURANCE AND DATA VALIDATION	
3.1	Field QC Samples	
3.2	Adherence to Mill Sampling SOPs	
3.3	Analyte Completeness Review	
3.4	Data Validation	
3.4.		
3.4.		
3.4.		
3.4.	,	
3.4.		
3.4.		
3.4. 3.4.		
3.4. 3.4.	T T	
3.4. 3.4.	1	
	NTERPRETATION OF DATA	
4.0		
15020	.1 Current Site Groundwater Contour Map	
4.1.	_	_
7.1.	Contour Maps for Previous Quarter	6
4.1.		
4.1.	2 - P I when the second of the property of the second of the property of the second	
4.1.	*	
4.2	Review of Analytical Results	
4.2.		
4.2.		
4.2.		
	LONG TERM PUMP TEST AT MW-4, MW-26, TW4-19, TW4-20, AND	-
	ΓW4-4 OPERATIONS REPORT	1
5.1	Introduction	

5.2	Pump Test Data Collection	22
5.3	Water Level Measurements	22
5.4	Pumping Rates and Volumes	23
5.5	Mass Removed	
5.6	Inspections	23
5.7	Conditions That May Affect Water Levels in Piezometers	23
6.0	CORRECTIVE ACTION REPORT	23
6.1	Assessment of Previous Quarter's Corrective Actions	24
7.0	CONCLUSIONS AND RECOMMENDATIONS	24
8.0	ELECTRONIC DATA FILES AND FORMAT	26
9.0	SIGNATURE AND CERTIFICATION	27
	LIST OF TABLES	
Table	Summary of Well Sampling for the Period	
Table	2 Mass of Chloroform Removed Per Well Per Quarter	
Table	Chloroform Pumping Rates and Volumes	

INDEX OF TABS

- Tab A Site Plan and Perched Well Locations White Mesa Site
- Tab B Order of Sampling and Field Data Worksheets
- Tab C Weekly and Monthly Depth to Water Data
- Tab D Kriged Current Quarter Groundwater Contour Map, Capture Zone Map, Capture Zone Details Map, and Depth to Water Data Table
- Tab E Kriged Previous Quarter Groundwater Contour Map
- Tab F Hydrographs of Groundwater Elevations Over Time for Chloroform Monitoring Wells
- Tab G Depths to Groundwater and Elevations Over Time for Monitoring Wells
- Tab H Laboratory Analytical Reports
- Tab I Quality Assurance and Data Validation Tables
 - I-1 Field Data QA/QC Evaluation
 - I-2 Holding Time Evaluation
 - I-3 Receipt Temperature Check
 - I-4 Analytical Method Check
 - I-5 Reporting Limit Evaluation
 - I-6 Trip Blank Evaluation
 - I-7 QA/QC Evaluation for Sample Duplicates
 - I-8 QC Control Limits for Analyses and Blanks
 - I-9 Rinsate Evaluation
- Tab J Kriged Current Quarter Chloroform Isoconcentration Map
- Tab K Analyte Concentration Data Over Time
- Tab L Chloroform Concentration Trend Graphs
- Tab M CSV Transmittal Letter

1.0 INTRODUCTION

The presence of chloroform was initially identified in groundwater at the White Mesa Mill (the "Mill") as a result of split sampling performed in May 1999. The discovery resulted in the issuance of State of Utah Notice of Violation ("NOV") and Groundwater Corrective Action Order ("CAO") State of Utah Department of Environmental Quality ("UDEQ") Docket No. UGW-20-01, which required that Energy Fuels Resources (USA) Inc. ("EFRI") submit a Contamination Investigation Plan and Report pursuant to the provisions of UAC R317-6-6.15(D).

The frequency of chloroform sampling, which was initially performed on a monthly basis, was modified on November 8, 2003. Since that time all chloroform contaminant investigation wells have been sampled on a quarterly basis.

This is the Quarterly Chloroform Monitoring Report for the first quarter of 2014 as required under the NOV and CAO. This report also includes the Operations Report for the Long Term Pump Test at MW-4, TW4-19, MW-26, TW4-20, and TW4-4 for the quarter.

2.0 CHLOROFORM MONITORING

2.1 Samples and Measurements Taken During the Quarter

A map showing the location of all groundwater monitoring wells, piezometers, existing wells, temporary chloroform contaminant investigation wells and temporary nitrate investigation wells is attached under Tab A. Chloroform samples and measurements taken during this reporting period are discussed in the remainder of this section.

2.1.1 TW4-32, TW4-33, and TW4-34

Installation of four new perched groundwater monitoring wells, TW4-28, TW4-29, TW4-30, and TW4-31 was completed on March 6, 2013 as required by the February 14, 2013 DRC Confirmatory Action Letter. TW4-28, TW4-29, TW4-30, and TW4-31 were installed to provide additional information regarding the nitrate concentrations in TW4-12 and TW4-27, which have exceeded the State of Utah groundwater quality standard of 10 mg/L. Pursuant to the agreements made with UDEQ, as documented in correspondence from UDEQ dated February 14, 2013, TW4-28, TW4-29, TW4-30, and TW4-31 were installed, developed, hydraulically tested, and sampled by the end of the second quarter 2013. TW4-28, TW4-29, TW4-30, and TW4-31 were also sampled during the regularly scheduled third quarter sampling event and the data are included in this report.

The second quarter 2013 data for TW4-28, TW4-29, TW4-30, and TW4-31 indicated that nitrate results in TW4-29, TW4-30, and TW4-31 were all below the State of Utah groundwater quality standard of 10 mg/L. However, TW4-29 had a chloroform result of 242 ug/L. A repeat sampling of TW4-29 for confirmation produced a result of 262 ug/L, indicating that the chloroform contamination does not appear to be bounded in the vicinity of TW4-29. The repeat sampling data were included in the second quarter 2013 report. The nitrate result in TW4-28 of

14.9 mg/L was above the nitrate standard of 10 mg/L, indicating that nitrate contamination was not bounded downgradient (southeast) of TW4-28. Based on the second quarter 2013 results for TW4-28, TW4-29, TW4-30, and TW4-31, and as discussed with UDEQ via telephone on July 25, 2013 and approved by UDEQ via letter dated August 2, 2013, EFRI added one additional monitoring well in the vicinity of TW4-28 and two additional monitoring wells in the vicinity of TW4-29. Installation of three new perched groundwater monitoring wells, TW4-32, TW4-33, and TW4-34 was completed the week of September 9, 2013 as discussed with UDEQ via telephone on July 25, 2013 and approved by UDEQ via letter dated August 2, 2013.

The DRC letter of February 14, 2013 required that a separate Contamination Investigation Report ("CIR") be prepared and submitted within 60 days of receipt of the analytical data for TW4-28, TW4-29, TW4-30, and TW4-31. Based on the second quarter 2013 data, as agreed to by UDEQ in the July 25, 2013 telephone call, it was considered premature to prepare a CIR based on the second quarter 2013 information only. As discussed, EFRI would collect hydraulic and contaminant concentration data from TW4-32, TW4-33, and TW4-34 in order to understand the dynamics of the chloroform contamination in the vicinity of TW4-29 and the nitrate contamination in the vicinity of TW4-28. Pursuant to the August 2, 2013 DRC letter, EFRI sampled the three new wells in the fourth quarter of 2013 and prepared a CIR, which was submitted to DRC on January 23, 2014.

2.1.2 Chloroform Monitoring

Quarterly sampling for chloroform monitoring parameters is currently required in the following wells:

TW4-1	TW4-10	TW4-21	TW4-28
TW4-2	TW4-11	TW4-22	TW4-29
TW4-3	TW4-12	TW4-23	TW4-30
TW4-4	TW4-13	TW4-24	TW4-31
TW4-5	TW4-14	TW4-25	TW4-32
TW4-6	TW4-16	MW-4	TW4-33
TW4-7	TW4-18	MW-26 (formerly TW4-15)	TW4-34
TW4-8	TW4-19	MW-32 (formerly TW4-17)	
TW4-9	TW4-20	TW4-26	
		TW4-27	

Chloroform monitoring was performed in all of the required chloroform monitoring wells. Table 1 provides an overview of all wells sampled during the quarter, along with the date samples were collected from each well, and the date(s) when analytical data were received from the contract laboratory. Table 1 also identifies equipment rinsate samples collected, as well as sample numbers associated with the deionized field blank ("DIFB") and any required duplicates.

As shown in Table 1, TW4-08 was sampled on January 23, 2014. The data were reviewed upon receipt and the chloroform value reported was higher than previous results. In order to verify the chloroform concentration, TW4-08 was resampled on February 6, 2014, with similar results. The results were discussed with DRC by telephone, on April 10, 2014. EFRI is planning to install an additional chloroform monitoring well east of TW4-08 in response to the concentration

reported this quarter. The location of the well and schedule for installation will be submitted to DRC under separate cover. The analytical results are discussed in detail in Section 4.2.3.

2.1.3 Parameters Analyzed

Wells sampled during this reporting period were analyzed for the following constituents:

- Chloroform
- Chloromethane
- Carbon tetrachloride
- Methylene chloride
- Chloride
- Nitrate plus Nitrite as Nitrogen

Use of analytical methods is consistent with the requirements of the Chloroform Investigation Monitoring Quality Assurance Program (the "Chloroform QAP") attached as Appendix A to the White Mesa Uranium Mill Groundwater Monitoring QAP Revision 7.2, dated June 6, 2012.

2.1.4 Groundwater Head Monitoring

Depth to groundwater was measured in the following wells and/or piezometers, pursuant to Part I.E.3 of the Groundwater Discharge Permit (the "GWDP"):

- The quarterly groundwater compliance monitoring wells
- Existing monitoring well MW-4 and all of the temporary chloroform investigation wells
- Piezometers P-1, P-2, P-3, P-4 and P-5
- MW-20 and MW-22
- Nitrate monitoring wells
- The DR piezometers that were installed during the Southwest Hydrologic Investigation

In addition to the above, depth to water measurements are routinely observed in conjunction with sampling events for all wells sampled during quarterly and accelerated efforts, regardless of the sampling purpose.

Weekly and monthly depth to groundwater measurements were taken in the chloroform pumping wells MW-4, MW-26, TW4-19, TW4-20, and TW4-4, and the nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2. In addition, monthly water level measurements were taken in non-pumping wells MW-27, MW-30, MW-31, TW4-21, TWN-1, TWN-3, TWN-4, TWN-7, and TWN-18.

2.2 Sampling Methodology and Equipment and Decontamination Procedures

EFRI completed, and transmitted to UDEQ on May 25, 2006, a revised QAP for sampling under the Mill's Groundwater Discharge Permit ("GWDP"). While the water sampling conducted for chloroform investigation purposes has conformed to the general principles set out in the QAP, some of the requirements in the QAP were not fully implemented prior to UDEQ's approval of

the QAP, for reasons set out in correspondence to UDEQ dated December 8, 2006. Subsequent to the delivery of the December 8, 2006 letter, EFRI discussed the issues brought forward in the letter with UDEQ and has received correspondence from UDEQ about those issues. In response to UDEQ's letter and subsequent discussions with UDEQ, EFRI modified the chloroform Quality Assurance ("QA") procedures within the Chloroform QAP. The Chloroform QAP describes the requirements of the chloroform investigation program and identifies where they differ from the Groundwater QAP. On June 20, 2009 the Chloroform QAP was modified to require that the quarterly chloroform reports include additional items specific to EFRI's ongoing pump testing and chloroform capture efforts. The Groundwater QAP as well as the Chloroform QAP were revised again on June 6, 2012. The revised Groundwater QAP and Chloroform QAP, Revision 7.2 were approved by DRC on June 7, 2012.

The sampling methodology, equipment and decontamination procedures used in the chloroform contaminant investigation, as summarized below, are consistent with the approved QAP Revision 7.2 and the Chloroform QAP.

2.2.1 Well Purging and Depth to Groundwater

The wells are purged prior to sampling by means of a portable pump. A list of the wells in order of increasing chloroform concentration is generated quarterly. The order for purging is thus established. The list is included with the Field Data Worksheets under Tab B. Mill personnel start purging with all of the non-detect wells and then move to the wells with detectable chloroform concentrations staring with the lowest concentration and proceeding to the wells with the highest concentration.

Samples are collected by means of disposable bailer(s) the day following the purging. The disposable bailer is used only for the collection of a sample from an individual well and disposed subsequent to the sampling. As noted in the approved QAP, Revision 7.2, sampling will generally follow the same order as purging; however; the sampling order may deviate slightly from the generated list. This practice does not affect the samples for these reasons: any wells sampled in slightly different order either have dedicated pumps or are sampled via a disposable bailer. This practice does not affect the quality or usability of the data as there will be no cross-contamination resulting from the sampling order.

Before leaving the Mill office, the portable pump and hose are rinsed with deionized ("DI") water. Where portable (non-dedicated) sampling equipment is used, a rinsate sample is collected at a frequency of one rinsate sample per 20 field samples. Well depth measurements are taken and the one casing volume is calculated for those wells which do not have a dedicated pump as described in Attachment 2-3 of the QAP. Purging is completed to remove stagnant water from the casing and to assure that representative samples of formation water are collected for analysis. There are three purging strategies that are used to remove stagnant water from the casing during groundwater sampling at the Mill. The three strategies are as follows:

1. Purging three well casing volumes with a single measurement of field parameters specific conductivity, turbidity, pH, redox potential, and water temperature

- 2. Purging two casing volumes with stable field parameters for specific conductivity, turbidity, pH, redox potential, and water temperature (within 10% Relative Percent Difference ["RPD"])
- 3. Purging a well to dryness and stability (within 10% RPD) of field parameters for pH, specific conductivity, and water temperature only after recovery

If the well has a dedicated pump, it is pumped on a set schedule per the remediation plan and is considered sufficiently evacuated to immediately collect a sample; however, if a pumping well has been out of service for 48 hours or more, EFRI will follow the purging requirements outlined in Attachment 2-3 of the QAP. The dedicated pump is used to collect parameters and to collect the samples as described below. If the well does not have a dedicated pump, a Grundfos pump (9 - 10 gpm pump) is then lowered to the screened interval in the well and purging is started. The purge rate is measured for the well by using a calibrated 5 gallon bucket. This purging process is repeated at each well location moving from least contaminated to the most contaminated well. All wells are capped and secured prior to leaving the sampling location.

Wells with dedicated pumps are sampled when the pump is in the pumping mode. If the pump is not pumping at the time of sampling, it is manually switched on by the Mill Personnel. The well is pumped for approximately 5 to 10 minutes prior to the collection of the field parameters. Per the approved QAP, one set of parameters is collected. Samples are collected following the measurement of one set of field parameters. After sampling, the pump is turned off and allowed to resume its timed schedule.

2.2.2 Sample Collection

Prior to sampling, a cooler with ice is prepared. The trip blank is also gathered at that time (the trip blank for these events is provided by the Analytical Laboratory). Once Mill Personnel arrive at the well sites, labels are filled out for the various samples to be collected. All personnel involved with the collection of water and samples are then outfitted with disposable gloves. Chloroform investigation samples are collected by means of disposable bailers.

Mill personnel use a disposable bailer to sample each well that does not have a dedicated pump. The bailer is attached to a reel of approximately 150 feet of nylon rope and then lowered into the well. After coming into contact with the water, the bailer is allowed to sink into the water in order to fill. Once full, the bailer is reeled up out of the well and the sample bottles are filled as follows:

- Volatile Organic Compound ("VOC") samples are collected first. This sample consists
 of three 40 ml vials provided by the Analytical Laboratory. The VOC sample is not
 filtered and is preserved with HCl;
- A sample for nitrate/nitrite is then collected. This sample consists of one 250 ml. bottle that is provided by the Analytical Laboratory. The nitrate/nitrite sample is not filtered and is preserved with H₂SO₄;

A sample for chloride is then collected. This sample consists of one 500 ml. bottle that is
provided by the Analytical Laboratory. The chloride sample is not filtered and is not
chemically preserved.

After the samples have been collected for a particular well, the bailer is disposed of and the samples are placed into the cooler that contains ice. The well is then recapped and Mill personnel proceed to the next well.

2.3 Field Data

Attached under Tab B are copies of the Field Data Worksheets that were completed during the quarter for the chloroform contaminant investigation monitoring wells identified in paragraph 2.1.1 above, and Table 1.

2.4 Depth to Groundwater Data and Water Table Contour Map

Attached under Tab C are copies of the Depth to Water Sheets for the weekly monitoring of MW-4, MW-26, TW4-19, TW4-20, TW4-4, TW4-22, TW4-24, TW4-25, and TWN-2 as well as the monthly depth to groundwater data for the chloroform contaminant investigation wells and the non-pumped wells measured during the quarter. Depth to groundwater measurements that were utilized for groundwater contours are included on the Quarterly Depth to Water Worksheet at Tab D of this report, along with the kriged groundwater contour map for the current quarter generated from this data. A copy of the kriged groundwater contour map generated from the previous quarter's data is provided under Tab E.

2.5 Laboratory Results

2.5.1 Copy of Laboratory Results

All analytical results were provided by American West Analytical Laboratories ("AWAL"). Table 1 lists the dates when analytical results were reported to the QA Manager for each sample.

Results from the analyses of samples collected for this quarter's chloroform contaminant investigation are provided under Tab H of this Report. Also included under Tab H are the results of the analyses for duplicate samples, the DIFB, and rinsate samples for this sampling effort, as identified in Table 1, as well as results for trip blank analyses required by the Chloroform QAP.

2.5.2 Regulatory Framework

As discussed in Section 1.0, above, the NOV and requirements of the CAO triggered a series of actions on EFRI's part. In addition to the monitoring program, EFRI has equipped nine wells with pumps to recover impacted groundwater, and has initiated recovery of chloroform from the perched zone.

Sections 4 and 5, below, interpret the groundwater level and flow information, contaminant analytical results, and pump test data to assess effectiveness of EFRI's chloroform capture program.

3.0 QUALITY ASSURANCE AND DATA VALIDATION

The QA Manager performed a QA/Quality Control ("QC") review to confirm compliance of the monitoring program with requirements of the QAP. As required in the QAP, data QA includes preparation and analysis of QC samples in the field, review of field procedures, an analyte completeness review, and QC review of laboratory methods and data. Identification of field QC samples collected and analyzed is provided in Section 3.1. Discussion of adherence to Mill sampling Standard Operating Procedures ("SOPs") is provided in Section 3.2. Analytical completeness review results are provided in Section 3.3. The steps and tests applied to check laboratory data QA/QC are discussed in Sections 3.4.4 through 3.4.9 below.

The analytical laboratory has provided summary reports of the analytical QA/QC measurements necessary to maintain conformance with National Environmental Laboratory Accreditation Conference ("NELAC") certification and reporting protocol. The Analytical Laboratory QA/QC Summary Reports, including copies of the Mill's Chain of Custody and Analytical Request Record forms for each set of Analytical Results, follow the analytical results under Tab H. Results of the review of the laboratory QA/QC information are provided under Tab I and are discussed in Section 3.4, below.

3.1 Field QC Samples

The following QC samples were generated by Mill personnel and submitted to the analytical laboratory in order to assess the quality of data resulting from the field sampling program.

Field QC samples for the chloroform investigation program consist of one field duplicate sample for each 20 samples, a trip blank for each shipped cooler that contains VOCs, one DIFB and rinsate samples.

During this quarter, two duplicate samples were collected as indicated in Table 1. The duplicates were sent blind to the analytical laboratory and analyzed for the same parameters as the chloroform wells.

Three trip blanks were provided by AWAL and returned with the quarterly chloroform monitoring samples.

Two rinsate blank samples were collected at a frequency of one rinsate per twenty samples per QAP Section 4.3.2 and as indicated on Table 1. Rinsate samples were labeled with the name of the subsequently purged well with a terminal letter "R" added (e.g. TW4-7R). The results of these analyses are included with the routine analyses under Tab H.

In addition, one DIFB, while not required by the Chloroform QAP, was collected and analyzed for the same constituents as the well samples and rinsate blank samples.

3.2 Adherence to Mill Sampling SOPs

The QA Manager's review of Mill Personnel's adherence to the existing SOPs, confirmed that the QA/QC requirements established in the QAP and Chloroform QAP were met.

3.3 Analyte Completeness Review

All analyses required by the CAO for chloroform monitoring for the period were performed.

3.4 Data Validation

The QAP and GWDP identify the data validation steps and data QC checks required for the chloroform monitoring program. Consistent with these requirements, the QA Manager performed the following evaluations: a field data QA/QC evaluation, a holding time check, a receipt temperature check, an analytical method check, a reporting limit evaluation, a trip blank check, a QA/QC evaluation of sample duplicates, a QC Control Limit check for analyses and blanks including the DIFB and a rinsate sample check. Each evaluation is discussed in the following sections. Data check tables indicating the results of each test are provided under Tab I.

3.4.1 Field Data QA/QC Evaluation

The QA Manager performs a review of the field recorded parameters to assess their adherence with QAP requirements. The assessment involved review of two sources of information: the Field Data Sheets and the Quarterly Depth to Water summary sheet. Review of the Field Data Sheets addresses well purging volumes and measurement of field parameters based on the requirements discussed in section 2.2.1 above. The purging technique employed determines the requirements for field parameter measurement and whether stability criteria are applied. Review of the Depth to Water data confirms that all depth measurements used for development of the groundwater contour maps were conducted within a five-day period as indicated by the measurement dates in the summary sheet under Tab D. The results of this quarter's review of field data are provided under Tab I.

Based upon the review of the field data sheets, the purging and field measurements were completed in conformance with the QAP requirements. A summary of the purging techniques employed and field measurements taken is described below:

Purging Two Casing Volumes with Stable Field Parameters (within 10% RPD)

Wells TW4-01, TW4-05, TW4-08, TW4-08 resample, TW4-09, TW4-11, TW4-12, TW4-16, MW-32, TW4-18, TW4-21, TW4-23, TW4-28, and TW4-32 were sampled after two casing volumes were removed. Field parameters (pH, specific conductivity, turbidity, water temperature, and redox potential) were measured during purging. All field parameters for this requirement were stable within 10% RPD.

Purging a Well to Dryness and Stability of a Limited List of Field Parameters

Wells TW4-2, TW4-3, TW4-6, TW4-07, TW4-10, TW4-13, TW4-14, TW4-26, TW4-27, TW4-29, TW4-30, TW4-31, TW4-33, and TW4-34 were pumped to dryness before two casing volumes were evacuated. After well recovery, one set of measurements were taken. The samples were then collected, and another set of measurements were taken. Stabilization of pH, conductivity and temperature are required within 10% RPD under the QAP, Revision 7.2. The QAP requirements for stabilization were met.

Continuously Pumped Wells

Wells MW-04, TW4-04, MW-26, TW4-19, TW4-20, TW4-22, TW4-24, and TW4-25 are continuously pumped wells. These wells are pumped on a set schedule per the remediation plan and are considered sufficiently evacuated to immediately collect a sample.

During review of the field data sheets, the QA Manager confirmed that sampling personnel consistently recorded depth to water to the nearest 0.01 foot.

The review of the field sheets for compliance with QAP, Revision 7.2 requirements resulted in the observations noted below. The QAP requirements in Attachment 2-3 specifically state that field parameters must be stabilized to within 10% over at least 2 consecutive measurements for wells purged to 2 casing volumes or purged to dryness. The QAP Attachment 2-3 states that turbidity should be less than 5 NTU prior to sampling unless the well is characterized by water that has a higher turbidity. The QAP Attachment 2-3 does not require that turbidity measurements be less than 5 NTU prior to sampling. As such, the noted observations below regarding turbidity measurements greater than 5 NTU are included for information purposes only.

Wells TW4-01, TW4-04, TW4-05, TW4-08, TW4-08 resample, TW4-09, TW4-11, TW4-16, MW-32, TW4-18, TW4-20, TW4-23, TW4-28, and TW4-32 exceeded the QAP's 5 NTU goal. EFRI's letter to DRC of March 26, 2010 discusses further why turbidity does not appear to be an appropriate parameter for assessing well stabilization. In response to DRC's subsequent correspondence dated June 1, 2010 and June 24, 2010, EFRI completed a monitoring well redevelopment program. The redevelopment report was submitted to DRC on September 30, 2011. DRC responded to the redevelopment report via letter on November 15, 2012. Per the DRC letter dated November 15, 2012, the field data generated this quarter are compliant with the turbidity requirements of the approved QAP.

3.4.2 Holding Time Evaluation

QAP Table 1 identifies the method holding times for each suite of parameters. Sample holding time checks are provided in Tab I. The samples were received and analyzed within the required holding times.

3.4.3 Receipt Temperature Evaluation

Chain of Custody sheets were reviewed to confirm compliance with the QAP requirement which specifies that samples be received at 6°C or lower. Sample temperatures checks are provided in Tab I. The samples were received within the required temperature limit.

3.4.4 Analytical Method Checklist

The analytical methods reported by the laboratory were checked against the required methods enumerated in the Chloroform QAP. Analytical method checks are provided in Tab I. The analytical methods were consistent with the requirements of the Chloroform QAP.

3.4.5 Reporting Limit Evaluation

The analytical method reporting limits reported by the laboratory were checked against the reporting limits enumerated in the Chloroform QAP. Reporting Limit Checks are provided under Tab I. The analytes were measured and reported to the required reporting limits; several sets of sample results had the reporting limit raised for at least one analyte due to matrix interference and/or sample dilution. In these cases, the reported value for the analyte was higher than the increased detection limit.

3.4.6 Receipt pH Evaluation

Appendix A of the QAP states that volatile samples are required to be preserved and arrive at the laboratory with a pH less than 2. A review of the laboratory data revealed that the volatile samples were received at the laboratory with a pH less than 2.

3.4.7 Trip Blank Evaluation

Trip blank results were reviewed to identify any VOC contamination resulting from transport of the samples. Trip blank checks are provided in Tab I. The trip blank results were less than the reporting limit for all VOCs.

3.4.8 QA/QC Evaluation for Sample Duplicates

Section 9.1.4 a) of the QAP states that RPDs will be calculated for the comparison of duplicate and original field samples. The QAP acceptance limits for RPDs between the duplicate and original field sample is less than or equal to 20% unless the measured results are less than 5 times the required detection limit. This standard is based on the EPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994, 9240.1-05-01 as cited in the QAP. The RPDs are calculated for the duplicate pairs for all analytes regardless of whether or not the reported concentrations are greater than 5 times the required detection limits; however, data are considered noncompliant only when the results are greater than 5 times the reported detection limit and the RPD is greater than 20%. The additional duplicate information is provided for information purposes.

The analytical results for the sample/duplicate pairs were within the 20% acceptance limits. The results of the RPD test are provided in Tab I.

3.4.9 Rinsate Sample Check

Rinsate blank sample checks are provided in Tab I. The rinsate blank sample concentration levels were compared to the QAP requirements i.e., that rinsate sample concentrations be one order of magnitude lower than that of the actual well. The rinsate blank sample results were nondetect for this quarter.

While not required by the Chloroform QAP, DIFB samples are collected to analyze the quality of the DI water system at the Mill, which is also used to collect rinsate samples. A review of the analytical results reported for the DIFB sample indicated the sample results were nondetect.

3.4.10 Other Laboratory QA/QC

Section 9.2 of the QAP requires that the laboratory's QA/QC Manager check the following items in developing data reports: (1) sample preparation information is correct and complete, (2) analysis information is correct and complete, (3) appropriate analytical laboratory procedures are followed, (4) analytical results are correct and complete, (5) QC samples are within established control limits, (6) blanks are within QC limits, (7) special sample preparation and analytical requirements have been met, and (8) documentation is complete. In addition to other laboratory checks described above, EFRI's QA Manager rechecks QC samples and blanks (items (5) and (6)) to confirm that the percent recovery for spikes and the relative percent difference for spike duplicates are within the method-specified acceptance limits, or that the case narrative sufficiently explains any deviation from these limits. Results of this quantitative check are provided in Tab I.

The lab QA/QC results met these specified acceptance limits except as noted below.

The QAP Section 8.1.2 requires that a Matrix Spike/Matrix Spike Duplicate ("MS/MSD") pair be analyzed with each analytical batch. The QAP does not specify acceptance limits for the MS/MSD pair, and the QAP does not specify that the MS/MSD pair be prepared on EFRI samples only. Acceptance limits for MS/MSDs are set by the laboratories. The review of the information provided by the laboratories in the data packages verified that the QAP requirement to analyze an MS/MSD pair with each analytical batch was met. While the QAP does not require it, the recoveries were reviewed for compliance with the laboratory established acceptance limits. The QAP does not require this level of review, and the results of this review are provided for information only.

The information from the Laboratory QA/QC Summary Reports indicates that the MS/MSDs recoveries and the associated RPDs for the samples were within acceptable laboratory limits for the regulated compounds except as indicated in Tab I. The data recoveries which are outside the laboratory established acceptance limits do not affect the quality or usability of the data because the recoveries are above the acceptance limits and are indicative of matrix interference. Matrix interferences are applicable to the individual sample results only. The requirement in the QAP to analyze a MS/MSD pair with each analytical batch was met and as such the data are compliant with the QAP.

The QAP specifies that surrogate compounds shall be employed for all organic analyses, but the QAP does not specify acceptance limits for surrogate recoveries. The analytical data associated with the routine quarterly sampling met the requirement specified in the QAP. The information from the Laboratory QA/QC Summary Reports indicates that the surrogate recoveries for the quarterly chloroform samples were within acceptable laboratory limits for the surrogate compounds. The requirement in the QAP to analyze a surrogate compounds was met and the data are compliant with the QAP. Furthermore, there are no QAP requirements for surrogate recoveries.

The information from the Laboratory QA/QC Summary Reports indicates that the Laboratory Control Samples (the "LCS") recoveries were within acceptable laboratory limits for the LCS compounds.

4.0 INTERPRETATION OF DATA

4.1 Interpretation of Groundwater Levels, Gradients and Flow Directions.

4.1.1 Current Site Groundwater Contour Map

The water level contour maps (See Tab D) indicate that perched water flow ranges from generally southwesterly beneath the Mill site and tailings cells to generally southerly along the eastern and western margins of White Mesa. Perched water mounding associated with the wildlife ponds locally changes the generally southerly perched water flow patterns. For example, northeast of the Mill site, mounding associated with wildlife ponds results in locally northerly flow near PIEZ-1. The impact of the mounding associated with the northern ponds, to which water has not been delivered since March 2012, is diminishing and is expected to continue to diminish as the mound decays due to reduced recharge.

Not only has recharge from the wildlife ponds impacted perched water elevations and flow directions at the site, but the cessation of water delivery to the northern ponds, which are generally upgradient of the nitrate and chloroform plumes at the site, has resulted in changing conditions that are expected to impact constituent concentrations and migration rates within the plumes. Specifically, past recharge from the ponds has helped limit many constituent concentrations within the plumes by dilution while the associated groundwater mounding has increased hydraulic gradients and contributed to plume migration. Since use of the northern wildlife ponds ceased in March 2012, the reduction in recharge and decay of the associated groundwater mound are expected to increase many constituent concentrations within the plumes while reducing hydraulic gradients and acting to reduce rates of plume migration. EFRI and its consultants have raised the issues and potential effects associated with cessation of water delivery to the northern wildlife ponds during discussions with DRC in March 2012 and May 2013.

The impacts associated with cessation of water delivery to the northern ponds are expected to propagate downgradient (south and southwest) over time. Wells close to the ponds are generally expected to be impacted sooner than wells farther downgradient of the ponds. Therefore, constituent concentrations are generally expected to increase in downgradient wells close to the ponds before increases are detected in wells farther downgradient of the ponds. Although such increases are anticipated to result from reduced dilution, the magnitude and timing of the increases are difficult to predict due to the complex permeability distribution at the site and factors such as pumping and the rate of decay of the groundwater mound. The potential exists for some wells completed in higher permeability materials to be impacted sooner than some wells completed in lower permeability materials even though the wells completed in lower permeability materials may be closer to the ponds.

Localized increases in concentrations of constituents such as chloroform and nitrate within and near the chloroform plume, and of nitrate and chloride within and near the nitrate plume, may

occur even when these plumes are under control. Ongoing mechanisms that can be expected to increase constituent concentrations locally as a result of reduced wildlife pond recharge include but are not limited to:

- 1) Reduced dilution the mixing of low constituent concentration pond recharge into existing perched groundwater will be reduced over time.
- 2) Reduced saturated thicknesses dewatering of higher permeability layers receiving primarily low constituent concentration pond water will result in wells intercepting these layers receiving a smaller proportion of the low constituent concentration water.

The combined impact of the above two mechanisms may be especially evident at chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20; nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2; and non-pumped wells adjacent to the pumped wells. The overall impact is expected to be generally higher constituent concentrations in these wells over time until mass reduction resulting from pumping and natural attenuation eventually reduces concentrations. Short-term changes in concentrations at pumping wells and wells adjacent to pumping wells are also expected to result from changes in pumping conditions.

In addition to changes in the flow regime caused by wildlife pond recharge, perched flow directions are locally influenced by operation of the chloroform and nitrate pumping wells. Well defined cones of depression are evident in the vicinity of all chloroform pumping wells except TW4-4, which began pumping in the first quarter of 2010. Although operation of chloroform pumping well TW4-4 has depressed the water table in the vicinity of TW4-4, a well-defined cone of depression is not clearly evident. The lack of a well-defined cone of depression near TW4-4 likely results from 1) variable permeability conditions in the vicinity of TW4-4, and 2) persistent relatively low water levels at adjacent well TW4-14.

Nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 started pumping during the first guarter of 2013. Water level patterns near these wells are expected to be influenced by the presence of, and the decay of, the groundwater mound associated with the northern wildlife ponds, and by the persistently low water level elevation at TWN-7. By last quarter, operation of the nitrate pumping system had produced well-defined impacts on water levels. A relatively large decrease in water level at nitrate pumping well TW4-25 resulted in an apparently large cone of depression near that well. The large decrease in water level at TW4-25 combined with decreases at nitrate pumping wells TW4-22 and TW4-24, and adjacent chloroform pumping wells TW4-19 and TW4-20, resulted in an apparently large increase in the combined influence of the nitrate and chloroform pumping systems. The apparent cone of depression near TW4-25 this quarter has decreased in magnitude compared to last quarter, because of a relatively large increase in water level Water levels in nearby pumping wells TW4-22 and TW4-24 showed small decreases this quarter, consistent with continuing development of cones of depression centered on these wells, and with the development of capture associated with the nitrate pumping system. The long term interaction between the nitrate and chloroform pumping systems will require more data to be collected as part of routine monitoring.

As discussed above, variable permeability conditions is one likely reason for the lack of a well-defined cone of depression near chloroform pumping well TW4-4. Changes in water levels at

wells immediately south of TW4-4 resulting from TW4-4 pumping are expected to be muted because TW4-4 is located at a transition from relatively high to relatively low permeability conditions south (downgradient) of TW4-4. The permeability of the perched zone at TW4-6, TW4-26 and TW4-29 is approximately two orders of magnitude lower than at TW4-4. Any drawdown of water levels at wells immediately south of TW4-4 resulting from TW4-4 pumping is also difficult to determine because of the general, long-term increase in water levels in this area due to recharge from the wildlife ponds.

Water levels at TW4-4 and TW4-6 increased by nearly 2.7 and 2.9 feet, respectively, between the fourth quarter of 2007 and the fourth quarter of 2009 (just prior to the start of TW4-4 pumping) at rates of approximately 1.2 feet/year and 1.3 feet/year, respectively. However, the increase in water level at TW4-6 has been reduced since the start of pumping at TW4-4 (first quarter of 2010) to approximately 0.5 feet/year suggesting that TW4-6 is within the hydraulic influence of TW4-4. Water level elevations at these wells are eventually expected to be influenced by cessation of water delivery to the northern wildlife ponds as discussed above. Recharge from the southern wildlife pond is expected to continue to have an effect on water levels near TW4-4, but the effects related to recharge from the northern ponds is expected to diminish over time as water is no longer delivered to the northern ponds.

The lack of a well-defined cone of depression at TW4-4 is also influenced by the persistent, relatively low water level at non-pumping well TW4-14, located east of TW4-4 and TW4-6. For the current quarter, the water level at TW4-14 was measured at approximately 5528.8 feet above mean sea level ("ft amsl"). This is approximately 11 feet lower than the water level at TW4-6 (approximately 5539.7 ft amsl) and 15 feet lower than the water level at TW4-4 (approximately 5544.1 ft amsl), even though TW4-4 is pumping.

Well TW4-27 (installed south of TW4-14 in the fourth quarter of 2011) has a static water level of approximately 5527.6 ft amsl, similar to TW4-14 (approximately 5528.8 ft amsl). TW4-27 was positioned at a location considered likely to detect any chloroform present and/or to bound the chloroform plume to the southeast and east (respectively) of TW4-4 and TW4-6. As will be discussed below, groundwater data collected since installation indicates that TW4-27 does indeed bound the chloroform plume to the southeast and east of TW4-4 and TW4-6 (respectively); however chloroform exceeding 70 µg/L has been detected at recently installed temporary perched well TW4-29 (located south of TW4-27) since the second quarter of 2013.

Prior to the installation of TW4-27, the persistently low water level at TW4-14 was considered anomalous because it appeared to be downgradient of all three wells TW4-4, TW4-6, and TW4-26, yet chloroform was not detected at TW4-14. Chloroform had apparently migrated from TW4-4 to TW4-6 and from TW4-6 to TW4-26, which suggested that TW4-26 was actually downgradient of TW4-6, and TW4-6 was actually downgradient of TW4-4, regardless of the flow direction implied by the low water level at TW4-14. The water level at TW4-26 (5538.53 feet amsl) is, however, lower than water levels at adjacent wells TW4-6 (5539.65 feet amsl), and TW4-23 (5542.35 feet amsl).

Hydraulic tests indicate that the permeability at TW4-27 is an order of magnitude lower than at TW4-6 and three orders of magnitude lower than at TW4-4 (see Hydro Geo Chem, Inc. [HGC],

September 20, 2010: Hydraulic Testing of TW4-4, TW4-6, and TW4-26, White Mesa Uranium Mill, July 2010; and HGC, November 28, 2011: Installation, Hydraulic Testing, and Perched Zone Hydrogeology of Perched Monitoring Well TW4-27, White Mesa Uranium Mill Near Blanding, Utah). The similar water levels at TW4-14 and TW4-27, and the low permeability estimate at TW4-27 suggest that both wells are completed in materials having lower permeability than nearby wells. The low permeability condition likely reduces the rate of long-term water level increase at TW4-14 and TW4-27 compared to nearby wells, yielding water levels that appear anomalously low. This behavior is consistent with hydraulic test data collected from recently installed wells TW4-29, TW4-30 and TW4-31, and new wells TW4-33 and TW4-34, which indicate that the permeability of these wells is one to two orders of magnitude higher than the permeability of TW4-27 (see HGC, January 23, 2014; Contamination Investigation Report, TW4-12 and TW4-27 Areas, White Mesa Uranium Mill Near Blanding, Utah). permeability at TW4-14 and TW4-27 is expected to retard the transport of chloroform to these wells (compared to nearby wells). As will be discussed in Section 4.2.3, first quarter, 2014 chloroform concentrations at TW4-26 and TW4-27 are 1.4 ug/L and non-detect, respectively and both wells are outside the chloroform plume.

Although chloroform exceeding 70 µg/L was detected at recently installed well TW4-29 (located south of TW4-27) and at new well TW4-33 (located between TW4-4 and TW4-29), chloroform was not detected at recently installed well TW4-30, located east and downgradient of TW4-29, nor at recently installed well TW4-31, located east of TW4-27, nor at new well TW4-34, located south and cross-gradient of TW4-29. The detections at TW4-29 and TW4-33 suggest that chloroform migrated southeast from the vicinity of TW4-4 to TW4-33 then TW4-29 in a direction nearly cross-gradient with respect to the direction of groundwater flow implied by the groundwater elevations. Such migration is possible because the water level at TW4-29 is lower than the water level at TW4-4 (and TW4-6). The hydraulic conductivities of TW4-29, TW4-30, and TW4-31 are one to two orders of magnitude lower than the conductivity of TW4-4, and one to two orders of magnitude higher than the conductivity of TW4-27. The permeability and water level distributions are generally consistent with the apparent nearly cross-gradient migration of chloroform around the low permeability zone defined by TW4-14 and TW4-27.

Data from existing, recently installed and new wells indicate that:

- 1. Chloroform exceeding 70 μ g/L at TW4-29 is bounded by concentrations below 70 μ g/L at wells TW4-26, TW4-27, TW4-30 and TW4-34. TW4-30 is downgradient of TW4-29; TW4-26 is upgradient of TW4-29; and TW4-27 and TW4-34 are cross-gradient of TW4-29.
- 2. Chloroform concentrations at TW4-33 that are lower than concentrations at TW4-29, and the likelihood that a pathway exists from TW4-4 to TW4-33 to TW4-29, suggests that concentrations in the vicinity of TW4-33 were likely higher prior to initiation of TW4-4 pumping, and that lower concentrations currently detected at TW4-33 are due to its closer proximity to TW4-4.

Furthermore, TW4-4 pumping is likely to reduce chloroform at both TW4-33 and TW4-29 by cutting off the source. The decrease at TW4-33 is expected to be faster than at TW4-29 because TW4-33 is in closer proximity to TW4-4 pumping. Such behavior is expected by analogy with

the decreases in chloroform concentrations that occurred at TW4-6 and TW4-26 once TW4-4 pumping began.

To ensure that chloroform in the southeasternmost portion of the plume is completely bounded, a new well is planned that will be located to the east of TW4-34 and to the south of TW4-30.

4.1.2 Comparison of Current Groundwater Contour Maps to Groundwater Contour Maps for Previous Quarter

The groundwater contour map for the Mill site for the fourth quarter of 2013, as submitted with the Chloroform Monitoring Report for the fourth quarter of 2013, is attached under Tab E.

A comparison of the water table contour maps for the current (first quarter of 2014) to the water table contour maps for the previous quarter (fourth quarter of 2013) indicates slightly smaller drawdowns related to operation of chloroform pumping wells TW4-19 and TW4-20 and substantially less drawdown associated with nitrate pumping well TW4-25. Nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 were brought into operation during the first quarter of 2013 and their impact on water level patterns was evident as of the previous quarter. During the previous quarter a large decrease in water level at nitrate pumping well TW4-25 resulted in an apparently large cone of depression near that well. The large decrease in water level at TW4-25 combined with decreases at nitrate pumping wells TW4-22 and TW4-24, and adjacent chloroform pumping wells TW4-19 and TW4-20, resulted in apparently large cones of depression associated with these wells.

As discussed in Section 4.1.1, pumping at chloroform well TW4-4, which began in the first quarter of 2010, has depressed the water table near TW4-4, but a well-defined cone of depression is not clearly evident, likely due to variable permeability conditions near TW4-4 and the persistently low water level at adjacent well TW4-14.

Water levels and water level contours for the site have not changed significantly since the last quarter except for a few locations. Reported decreases in water levels (increases in drawdown) of approximately 2.6 feet and 4.5 feet occurred in chloroform pumping well MW-26 and nitrate pumping well TW4-24. Furthermore, increases of approximately 2.7 feet, 3.1 feet, and 23.8 feet occurred, respectively, in chloroform pumping well TW4-20 and nitrate pumping wells TWN-2 and TW4-25. Changes in water levels at other pumping wells (chloroform pumping wells MW-4, TW4-4 and TW4-19, and nitrate pumping well TWN-22) were less than 2 feet. Water level fluctuations at pumping wells typically occur in part because of fluctuations in pumping conditions just prior to and at the time the measurements are taken.

The decreases in water levels (increases in drawdown) at chloroform pumping wells MW-26 and nitrate pumping well TW4-24 have increased the apparent capture of these wells relative to other pumping wells. The apparently large cone of depression associated with nitrate pumping well TW4-25 has decreased as a result of the 23.8 foot water level increase between the previous and current quarters. Furthermore, the apparent capture associated with chloroform pumping well TW4-20 has decreased slightly since the previous quarter, due to the water level increase (decrease in drawdown) of 2.7 feet.

Reported water level decreases of 0.11 and 0.2 feet at Piezometers 2 and 3 likely result from cessation of water delivery to the northern wildlife ponds as discussed in Section 4.1.1 and the consequent continuing decay of the associated perched water mound. The reported water level decreases of 1.5 feet and 2.1 feet at Piezometers 4 and 5 may result from reduced recharge at the southern wildlife pond.

Reported water level increases of 4.8 feet at MW-3, of 3.2 feet at MW-20 and of 4.1 feet at MW-23 between the previous quarter and the current quarter bring these wells back to more typical status. Decreases at these wells last quarter were likely the result of purging and sampling prior to measuring water levels Because these wells have relatively low permeability, there was likely insufficient time for water levels to have fully recovered from purging prior to water level measurement during the previous quarter.

4.1.3 Hydrographs

Attached under Tab F are hydrographs showing groundwater elevation in each chloroform contaminant investigation monitor well over time.

4.1.4 Depth to Groundwater Measured and Groundwater Elevation

Attached under Tab G are tables showing depth to groundwater measured and groundwater elevation over time for each of the wells listed in Section 2.1.1 above.

4.1.5 Evaluation of the Effectiveness of Hydraulic Capture

Perched water containing chloroform has been removed from the subsurface by operating chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20. The primary purpose of the pumping is to reduce total chloroform mass in the perched zone as rapidly as is practical. Pumping wells upgradient of TW4-4 were chosen because 1) they are located in areas of the perched zone having relatively high permeability and saturated thickness, and 2) high concentrations of chloroform were detected at these locations. The relatively high transmissivity of the perched zone in the vicinity of these pumping wells results in the wells having a relatively high productivity. The combination of relatively high productivity and high chloroform concentrations allows for a high rate of chloroform mass removal. TW4-4 is located in a downgradient area having relatively high chloroform concentrations but relatively small saturated thickness, and at a transition from relatively high to relatively low permeability conditions downgradient of TW4-4. As with the other chloroform pumping wells, pumping TW4-4 helps to reduce the rate of chloroform migration in downgradient portions of the plume.

The impact of chloroform pumping is indicated by the water level contour maps attached under Tabs D and E. Cones of depression are evident in the vicinity of MW-4, MW-26, TW4-19, and TW4-20 which continue to remove significant quantities of chloroform from the perched zone. The water level contour maps indicate effective capture of water containing high chloroform concentrations in the vicinities of these pumping wells. As discussed in Section 4.1.1, the drawdown associated with chloroform pumping well TW4-4 is likely less apparent due to variable permeability conditions near TW4-4 and the persistently low water level at adjacent well TW4-14.

During the previous quarter, decreases in water levels at nitrate pumping well TW4-24, and adjacent chloroform pumping wells TW4-19 and TW4-20, combined with the large water level decrease at nitrate pumping well TW4-25, had created apparently significant cones of depression and detectable capture associated with many of the nitrate pumping wells, in particular TW4-25. The increased cone of depression at TW4-25 had expanded the apparent capture of the chloroform pumping system to the west. However, the influence of TW4-25 was likely overestimated because of the large decline in water level measured in TW4-25 last quarter.

A proportionally large (nearly 24 feet) increase in water level at nitrate pumping well TW4-25 during the current quarter reduced the magnitude of the apparent cone of depression centered on this well. Both increases and decreases in water levels were reported in nearby pumping wells this quarter. The water level decrease reported at nitrate pumping well TW4-22 was less than 1 foot, while water levels in nitrate pumping wells TWN-2 and TW4-24 increased by 3.1 feet and decreased by 4.5 feet, respectively. Chloroform pumping wells MW-4, TW-4 and TW4-19 showed no significant change in water level compared to last quarter. TW4-20, adjacent to TW4-19, showed a water level increase of 2.7 feet, while MW-26, located just south of TW4-20, showed a water level decrease of 2.6 feet compared to last quarter.

The capture associated with nitrate pumping wells is expected to increase over time as water levels continue to decline due to cessation of water delivery to the northern wildlife ponds and continued pumping. Slow development of hydraulic capture is consistent with and expected based on the relatively low permeability of the perched zone at the site.

Chloroform concentrations exceeding 70 µg/L have occurred in the past at some locations downgradient of pumping wells (for example, at TW4-6, located immediately south of TW4-4), where the lower permeability and relatively small saturated thickness of the perched zone significantly limit the rate at which chloroform mass can be removed by pumping. By removing mass and reducing hydraulic gradients, thereby reducing the rate of downgradient chloroform migration, and allowing natural attenuation to be more effective, pumping at the productive, upgradient locations has a beneficial effect on this downgradient chloroform. Pumping at TW4-4 was implemented during the first quarter of 2010 to improve capture in this downgradient area to the extent allowable by the lower productivity conditions that exist in this area. The beneficial effect of pumping TW4-4 is demonstrated by the decrease in chloroform concentrations at TW4-6 from 1,000 μg/L to 5.7 μg/L, and at TW4-26 from 13 μg/L to 1.4 μg/L since pumping began at TW4-4. Concentrations at these wells have decreased substantially even though they do not unambiguously appear to be within the hydraulic capture of TW4-4. As discussed in Section 4.1.1, however, the decrease in the long-term rate of water level rise at TW4-6 since pumping began at TW4-4 does suggest that TW4-6 is within the hydraulic influence of TW4-4. Regardless of whether TW4-6 can be demonstrated to be within hydraulic capture of TW4-4, pumping TW4-4 reduces chloroform migration to TW4-6 and TW4-26 by the mechanisms discussed above.

Chloroform exceeding 70 μ g/L was detected at recently installed well TW4-29, located south of TW4-27 and east of TW4-26, and generally cross-gradient of TW4-4 and TW4-6 with respect to the groundwater flow directions implied by groundwater elevations in the area. As discussed in

Section 4.1.1, this may represent chloroform migrating around the low permeability area defined by TW4-27 and TW4-14. The apparent migration pathway from TW4-4 to TW4-29 is consistent with chloroform exceeding 70 µg/L detected at new well TW4-33, located between TW4-4 and TW4-29. Chloroform concentrations at TW4-33 that are lower than concentrations at TW4-29, and the likelihood that a pathway exists from TW4-4 to TW4-33 to TW4-29, suggest that concentrations in the vicinity of TW4-33 were likely higher prior to initiation of TW4-4 pumping. TW4-4 pumping is likely to reduce chloroform at both TW4-33 and TW4-29 by cutting off the source. The decrease at TW4-33 is expected to be faster than at TW4-29 because TW4-33 is in closer proximity to TW4-4 pumping. Such behavior is expected by analogy with the decreases in chloroform concentrations seen at TW4-6 and TW4-26 once TW4-4 pumping began.

4.2 Review of Analytical Results

4.2.1 Current Chloroform Isoconcentration Map

Included under Tab J of this Report is a current chloroform isoconcentration map for the Mill site.

4.2.2 Chloroform Concentration Trend Data and Graphs

Attached under Tab K are tables summarizing values for all required parameters, chloride, nitrate/nitrite, carbon tetrachloride, chloroform, chloromethane, and methylene chloride, for each well over time.

Attached under Tab L are graphs showing chloroform concentration trends in each monitor well over time.

4.2.3 Interpretation of Analytical Data

Comparing the chloroform analytical results to those of the previous quarter, as summarized in the table included under Tab K, the following observations can be made:

- a) Chloroform concentrations have increased by more than 20% in the following wells compared to last quarter: MW-26 and TW4-24;
- b) Chloroform concentrations have decreased by more than 20% in the following wells compared to last quarter: TW4-16, TW4-19 and TW4-26;
- c) Chloroform concentrations have remained within 20% in the following wells compared to last quarter: MW-4, TW4-1, TW4-2, TW4-4, TW4-5, TW4-6, TW4-7, TW4-10, TW4-11, TW4-18, TW4-20, TW4-21, TW4-22, TW4-29, and TW4-33;
- d) Chloroform concentrations have remained non-detect in the following wells: MW-32, TW4-3, TW4-9, TW4-12, TW4-13, TW4-14, TW4-23, TW4-25, TW4-27, TW4-28, TW4-30, TW4-31, TW4-32 and TW4-34; and

e) Chloroform at TW4-8 increased from non-detect to 100 μg/L.

As indicated, chloroform concentrations at many of the wells with detected chloroform were within 20% of the values reported for the wells during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. Wells MW-26, TW4-16, TW4-19, TW4-24 and TW4-26 had changes in concentration greater than 20%. Of these, MW-26 and TW4-19 are chloroform pumping wells, and TW4-24 is a nitrate pumping well. TW4-16 is located adjacent to chloroform pumping well MW-26. Fluctuations in concentrations at both chloroform and nitrate pumping wells and wells adjacent to pumping wells likely result in part from changes in pumping. The decrease in concentration at TW4-16 from 13.4 to 6.9 µg/L is likely related to its location adjacent to pumping well MW-26 and to its position immediately downgradient of the plume. TW4-26 is also located near the downgradient edge of the plume. Slight changes in plume boundaries and concentrations at wells near the boundaries are expected to result from changes in upgradient pumping.

Chloroform pumping well TW4-20 had the highest detected chloroform concentration. Since the last quarter, the chloroform concentration in TW4-20 increased from 15,700 μ g/L to 17,800 μ g/L, the concentration in adjacent pumping well TW4-19 decreased from 942 μ g/L to 586 μ g/L, and the concentration in nearby well TW4-21 increased from 204 to 220 μ g/L. The chloroform concentration in nitrate pumping well TW4-22 decreased from 13,300 μ g/L to 12,100 μ g/L. Wells TW4-23 and TW4-25 remained non-detect for chloroform. The chloroform concentration in nitrate pumping well TW4-24 increased from 32.5 μ g/L to 78.5 μ g/L, bringing it within the chloroform plume for the first time. TW4-25, located north of TW4-21, continues to bound the chloroform plume to the north.

Chloroform at TW4-8 (which has been non-detect since the fourth quarter of 2007) was detected at a concentration of $100~\mu g/L$. TW4-8 is located immediately east of chloroform pumping well MW-4, where chloroform was detected at a concentration of $1,380~\mu g/L$. Between the fourth quarter of 2004 and the fourth quarter of 2013, the plume boundary remained between MW-4 and TW4-8. Chloroform at TW4-8 is bounded to the north by TW4-3 (non-detect), to the northeast by TW4-13 (non-detect), and to the southeast by TW4-14 (non-detect). The occurrence of elevated chloroform at TW4-8 is likely related to its location adjacent to pumping well MW-4 and along the eastern plume boundary. Changes in the plume boundary near TW4-8 are expected to result from changes in pumping and reduced dilution resulting from cessation of water delivery to the northern wildlife ponds. A new well (well TW4-36, as shown on Figure A-1) is to be installed east of TW4-8 between TW4-13 and TW4-14 to better define chloroform in the vicinity of TW4-8.

In addition, the main southern plume boundary remains between TW4-4 and TW4-6. Chloroform at recently installed well TW4-29 (located at the southern tip of the plume, to the east of TW4-26 and to the south of TW4-27) showed little change from the last quarter, decreasing slightly from 260 μ g/L to 258 μ g/L. Chloroform at TW4-29 is bounded to the north by TW4-27 (non-detect), to the east by TW4-30 (non-detect), to the south by TW4-34 (non-detect), and to the west by TW4-26 (1.4 μ g/L). To ensure that chloroform in this area is completely bounded, a new well will be located to the east of TW4-34 and to the south of TW4-30 (well TW4-35, as shown on Figure A-1).

Chloroform at new well TW4-33 (located between TW4-4 and TW4-29) also showed a small decrease in concentration, from 126 μ g/L to 124 μ g/L. Chloroform at TW4-33 is bounded to the north by TW4-14 (non-detect), to the east by TW4-27 (non-detect), to the west by TW4-6 (5.7 μ g/L), and to the south and west by TW4-26 (1.4 μ g/L). This chloroform distribution indicates that the plume southeast of TW4-4 is very narrow compared to more upgradient locations.

The chloroform concentration in TW4-6 increased slightly from approximately 5.5 μ g/L to 5.7 μ g/L, and, as discussed above, is outside the chloroform plume boundary. Since initiation of pumping of TW4-4 in the first quarter of 2010, concentrations at TW4-6 have decreased from 1,000 μ g/L to 5.7 μ g/L. TW4-6, installed in the second quarter of 2000, was the most downgradient temporary perched well prior to installation of temporary well TW4-23 in 2007 and temporary well TW4-26 in the second quarter of 2010. TW4-6 remained outside the chloroform plume between the second quarter of 2000 and the fourth quarter of 2008. TW4-6 likely remained outside the chloroform plume during this time due to a combination of 1) slow rates of downgradient chloroform migration in this area due to low permeability conditions and the effects of upgradient chloroform removal by pumping, and 2) natural attenuation.

The slow rate of chloroform migration in the vicinity of TW4-6 is demonstrated by comparing the rate of increase in chloroform at this well to the rate of increase in the nearest upgradient well TW4-4. Concentrations at TW4-4 increased from non-detect to more than 2,200 μ g/L within only 2 quarters whereas 16 quarters were required for concentrations in TW4-6 to increase from non-detect to only 81 μ g/L. This behavior is consistent with hydraulic tests performed at TW4-4, TW4-6, and TW4-26 during the third quarter of 2010 that indicate a nearly two order of magnitude decrease in permeability south (downgradient) of TW4-4. Chloroform migration rates in the vicinity of well TW4-26 and recently installed wells TW4-29 and TW4-33 are also expected to be relatively slow due to upgradient pumping and relatively low permeability conditions. By analogy with the water level and concentration behavior of nearby wells TW4-6 and TW4-26, chloroform concentrations at TW4-29 and TW4-33 are expected to eventually trend downward.

Although changes in concentration have occurred in wells within the chloroform plume, the boundaries of the plume have not changed significantly since the last quarter, except near TW4-24 and TW4-8. Nitrate pumping has caused the boundary of the northern portion of the chloroform plume to continue to move to the west toward TW4-24 which is now encompassed by the plume, and the eastern plume boundary has moved slightly to the east to encompass TW4-8. Continued operation of the nitrate pumping system is expected to enhance the capture zone associated with the chloroform pumping system.

5.0 LONG TERM PUMP TEST AT MW-4, MW-26, TW4-19, TW4-20, AND TW4-4 OPERATIONS REPORT

5.1 Introduction

As a part of the investigation of chloroform contamination at the Mill site, EFRI has been conducting a Long Term Pump Test on MW-4, TW4-19, MW-26, and TW4-20, and, since January 31, 2010, TW4-4. The purpose of the test is to serve as an interim action that will

remove a significant amount of chloroform-contaminated water while gathering additional data on hydraulic properties in the area of investigation.

Beginning in January 2013, EFRI began long term pumping of TW4-22, TW4-24, TW4-25, and TWN-02 as required by the Nitrate CAP, dated May 7, 2012 and the Stipulated Consent Order (the "SCO") dated December 12, 2012. Because wells TW4-22, TW4-24, and TW4-25 are chloroform program wells, they are included in this report and any chloroform removal realized as part of this pumping is calculated and included in the chloroform quarterly reports.

The following information documents the operational activities during the quarter.

5.2 Pump Test Data Collection

The long term pump test for MW-4 was started on April 14, 2003, followed by the start of pumping from TW4-19 on April 30, 2003, from MW-26 on August 8, 2003, from TW4-20 on August 4, 2005, from TW4-4 on January 31, 2010, and from TW4-22, TW4-24, and TW4-25 on January 26, 2013. Personnel from Hydro Geo Chem, Inc. were on site to conduct the first phase of the pump test and collect the initial two days of monitoring data for MW-4. EFRI personnel have gathered subsequent water level and pumping data.

Analyses of hydraulic parameters and discussions of perched zone hydrogeology near MW-4 has been provided by Hydro Geo Chem in a separate report, dated November 12, 2001, and in the May 26, 2004 Final Report on the Long Term Pumping Test.

Data collected during the quarter included the following:

- Measurement of water levels at MW-4, TW4-19, MW-26, TW4-20, and TW4-4, on a weekly basis, and at selected temporary wells and permanent monitoring wells on a monthly basis.
- Measurement of pumping history, including:
 - pumping rates
 - total pumped volume
 - operational and non-operational periods.
- Periodic sampling of pumped water for chloroform and nitrate/nitrite analysis and other constituents
- Measurement of water levels weekly at TW4-22, TW4-24, TW4-25, and TWN-02 commencing January 28, 2013, and on a monthly basis for selected temporary wells and permanent monitoring wells.

5.3 Water Level Measurements

Beginning August 16, 2003, the frequency of water level measurements from MW-4, MW-26, and TW4-19 was reduced to weekly. From commencement of pumping TW4-20, and regularly after March 1, 2010 for TW4-4, water levels in these wells have been measured weekly. From commencement of pumping, water levels in wells TW4-22, TW4-24, TW4-25, and TWN-02 have been measured weekly. Depth to groundwater in all other chloroform contaminant

investigation wells is monitored monthly. Copies of the weekly Depth to Water monitoring sheets for MW-4, MW-26, TW4-19, TW4-20, TW4-4, TW4-22, TW4-24, TW4-25 and TWN-02 and the monthly Depth to Water monitoring sheets for the chloroform contaminant investigation wells and the selected temporary wells and permanent monitoring wells are included under Tab C. Monthly depth to water measurements for the quarter are recorded in the Field Data Worksheets included under Tab D.

5.4 Pumping Rates and Volumes

Table 2 summarizes the recovered mass of chloroform by well per quarter and historically since the inception of the chloroform recovery program for the active pumping wells. It is important to note that TWN-02 is a nitrate program well and is sampled only for nitrate and chloride as required by the nitrate program. Because TWN-02 is not sampled or analyzed for chloroform, the mass of chloroform recovered is not calculated.

The pumping wells do not pump continuously, but are on a delay device. The wells purge for a set amount of time and then shut off to allow the well to recharge. Water from the pumping wells is transferred to a holding tank. The water in the holding tank is used in the Mill processes. The pumping rates and volumes for each of the pumping wells are shown in Table 3.

On February 17, 2014, EFRI Field Personnel noted that the pump in TW4-19 was not working. The pump was replaced on February 18, 2014 and was fully operational within 24 hours of discovery. Therefore, no notice to DRC was required.

Except for noted above, no other operational problems were observed with the wells or pumping equipment during the quarter.

5.5 Mass Removed

Chloroform removal was estimated as of the first quarter 2007. Since that estimation, the mass removed by well for each quarter has been compiled in Table 2, which shows the pounds of chloroform that have been removed to date.

5.6 Inspections

All of the required inspections were completed and the inspection forms are included in Tab C.

5.7 Conditions That May Affect Water Levels in Piezometers

No water was added to the any of the wildlife ponds during the quarter.

6.0 CORRECTIVE ACTION REPORT

There are no corrective actions required during the current monitoring period.

6.1 Assessment of Previous Quarter's Corrective Actions

There were no corrective actions required during the previous monitoring period.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The water level contour maps for the first quarter, 2014 indicate effective capture of water containing high chloroform concentrations in the vicinity of chloroform pumping wells MW-4, MW-26, TW4-19, and TW4-20. A well-defined capture zone is not clearly evident at chloroform pumping well TW4-4. The capture zone associated with TW4-4 is likely obscured by the low water level at adjacent well TW4-14 and the two orders of magnitude decrease in permeability south of TW4-4. However, the decrease in chloroform concentrations at TW4-6 (located downgradient of TW4-4) and the decrease in rate of water level rise since the fourth quarter of 2009 are likely related to TW4-4 pumping. Cones of depression associated with the nitrate pumping wells became evident as of last quarter and first quarter, 2014 data indicate that capture associated with the nitrate pumping is continuing to develop.

First quarter, 2014 chloroform concentrations at many of the wells with detected chloroform were within 20% of the values reported during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. Changes in concentration greater than 20% occurred in wells MW-26, TW4-16, TW4-19, TW4-24, and TW4-26. Of the latter, MW-26 and TW4-19 are chloroform pumping wells, and TW4-24 is a nitrate pumping well. Fluctuations in concentrations at both chloroform and nitrate pumping wells and wells adjacent to pumping wells likely result in part from changes in pumping. The decrease in chloroform at TW4-16 from 13.4 µg/L to 6.93 µg/L is likely related to its location adjacent to pumping well MW-26 and to its position immediately downgradient of the plume. Slight changes in plume boundaries and concentrations at wells near the boundaries are expected to result from changes in upgradient pumping. Changes in concentration at chloroform wells are also expected to result from continued operation of nitrate pumping wells as the capture associated with the nitrate pumping system enhances the capture associated with the chloroform pumping system.

In addition, the concentration at TW4-8 increased from non-detect to $100~\mu g/L$, bringing it within the plume for the first time since the fourth quarter of 2004. This change in concentration likely results from its position adjacent to chloroform pumping well MW-4 and the plume boundary, and to cessation of water delivery to the northern wildlife ponds. Wells TW4-13 and TW4-14, located immediately northeast and southeast of TW4-8, respectively, remain non-detect. A new well (TW4-36) is to be installed east of TW4-8 between TW4-13 and TW4-14 to better define chloroform in the vicinity of TW4-8.

Chloroform pumping well TW4-20 had the highest detected chloroform concentration. Since the last quarter, the chloroform concentration in TW4-20 increased from 15,700 μ g/L to 17,800 μ g/L, the concentration in adjacent pumping well TW4-19 decreased from 942 μ g/L to 586 μ g/L, and the concentration in nearby well TW4-21 increased from 204 μ g/L to 220 μ g/L. The chloroform concentration in nitrate pumping well TW4-22 decreased from 13,300 μ g/L to 12,100 μ g/L. while the concentration in adjacent nitrate pumping well TW4-24 increased from 32.5 μ g/L to 78.5 μ g/L, bringing it within the chloroform plume for the first time. Fluctuations in concentrations in wells near TW4-20 are likely related to their location near the suspected former

office leach field source area in addition to variations in pumping in TW4-20 and nearby wells. Regardless of these measured fluctuations in chloroform concentrations, sampling of TW4-25 (located north of TW4-21), indicates that TW4-25 remains outside the chloroform plume and thus bounds the plume to the north. In addition, the main southern plume boundary remains between TW4-4 and TW4-6.

Chloroform at recently installed well TW4-29 (located at the southern tip of the plume, to the east of TW4-26 and to the south of TW4-27) decreased slightly from 260 μ g/L to 258 μ g/L. The results at this well show that a very narrow extension of the chloroform plume is present between TW4-4 and TW4-29. Chloroform at TW4-29 is bounded to the north by TW4-27, to the east by TW4-30, to the south by TW4-34, and to the west by TW4-26. Chloroform at new well TW4-33 (located between TW4-4 and TW4-29) is bounded to the north by TW4-14, to the east by TW4-27, to the west by TW4-6, and to the south and west by TW4-26.

Although changes in concentration have occurred in wells within the chloroform plume, boundaries of the plume have not changed significantly since the last quarter, except near TW4-24 and TW4-8. As discussed above, nitrate pumping has caused the boundary of the northern portion of the chloroform plume to continue to move to the west toward TW4-24, which is now encompassed by the plume, and the eastern boundary of the plume has moved slightly east to encompass TW4-8. Sampling of recently installed well TW4-30, and new wells TW4-33 and TW4-34 indicate that the southeastern portion of the chloroform plume is bounded. To ensure that chloroform in this area is completely bounded, a new well (TW4-35) will be located to the east of TW4-34 and to the south of TW4-30. Overall, the plume is bounded to the north by TW4-25; to the west by MW-28, TW4-6, TW4-16, and TW4-26; to the east by TW4-3, TW4-5, TW4-9, TW4-12, TW4-13, TW4-14, TW4-18, TW4-27, and TW4-30; and to the south by TW4-34.

Continued operation of chloroform pumping wells MW-4, MW-26, TW4-19, and TW4-20 is recommended. Pumping these wells, regardless of any short term fluctuations in concentrations detected at the wells (such as at TW4-20), helps to reduce downgradient chloroform migration by removing chloroform mass and reducing hydraulic gradients, thereby allowing natural attenuation to be more effective. Continued operation of chloroform pumping well TW4-4 is also recommended to improve capture of chloroform to the extent practical in the southern portion of the plume. The general decrease in chloroform concentrations at TW4-6 from 1,000 µg/L to 5.7 µg/L since the first quarter of 2010 is likely related to pumping at TW4-4. The decrease in the long-term rate of water level rise at TW4-6 since TW4-4 pumping began, which suggests that TW4-6 is within the hydraulic influence of TW4-4, is consistent with the decrease in chloroform concentrations at TW4-6. Furthermore, because of the influence of TW4-4 pumping, and by analogy with the water level and concentration behavior of nearby wells TW4-6 and TW4-26, chloroform concentrations at TW4-29 and TW4-33 are expected to eventually trend downward. Several more quarters of data will be likely be required before trends at these wells can be properly evaluated.

EFRI and its consultants have raised the issues and potential effects associated with cessation of water delivery to the northern wildlife ponds in March, 2012 during discussions with DRC in March 2012 and May 2013. While past recharge from the ponds has helped limit many constituent concentrations within the chloroform and nitrate plumes by dilution, the associated

groundwater mounding has increased hydraulic gradients and contributed to plume migration. Since use of the northern wildlife ponds ceased in March 2012, the reduction in recharge and decay of the associated groundwater mound are expected to increase constituent concentrations within the plumes while reducing hydraulic gradients and rates of plume migration.

The net impact of reduced wildlife pond recharge is expected to be beneficial even though it is also expected to result in higher concentrations that will persist until continued mass reduction via pumping and natural attenuation ultimately reduce concentrations. Temporary increases in chloroform concentrations are judged less important than reduced chloroform migration rates. The actual impacts of reduced recharge on concentrations and migration rates will be defined by continued monitoring.

8.0 ELECTRONIC DATA FILES AND FORMAT

EFRI has provided to the Executive Secretary an electronic copy of the laboratory results for groundwater quality monitoring conducted under the chloroform contaminant investigation during the quarter, in Comma Separated Values format. A copy of the transmittal e-mail is included under Tab M.

9.0 SIGNATURE AND CERTIFICATION

This document was prepared by Energy Fuels Resources (USA) Inc. on May 19, 2014.

Energy Fuels Resources (USA) Inc.

By:

Frank Filas, P.E

Vice President, Permitting and Environmental Affairs

Certification:

I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Frank Filas, P.E

Vice President, Permitting and Environmental Affairs

Energy Fuels Resources (USA) Inc.

Tables

Table 1: Summary of Well Sampling for the Period

Well	Sample Date	Date of Lab Repor
MW-04	1/27/2014	2/10/2014
TW4-01	2/5/2014	2/17/2014
TW4-02	2/6/2014	2/17/2014
TW4-03	1/22/2014	2/4/2014
TW4-03R	1/21/2014	2/4/2014
TW4-04	1/27/2014	2/10/2014
TW4-05	1/30/2014	2/10/2014
TW4-06	1/29/2014	2/10/2014
TW4-07	2/5/2014	2/17/2014
TW4-08	1/23/2014	2/4/2014
TW4-08 Resample	2/6/2014	2/17/2014
TW4-09	1/29/2014	2/10/2014
TW4-10	2/5/2014	2/17/2014
TW4-11	2/5/2014	2/17/2014
TW4-12	1/22/2014	2/4/2014
TW4-13	1/22/2014	2/4/2014
TW4-14	1/22/2014	2/4/2014
MW-26	1/27/2014	2/10/2014
TW4-16	1/29/2014	2/10/2014
MW-32	1/29/2014	2/10/2014
TW4-18	1/30/2014	2/10/2014
TW4-19	1/27/2014	2/10/2014
TW4-20	1/27/2014	2/10/2014
TW4-21	2/5/2014	2/17/2014
TW4-22	1/27/2014	2/10/2014
TW4-23	1/23/2014	2/4/2014
TW4-24	1/27/2014	2/10/2014
TW4-25	1/27/2014	2/10/2014
TW4-26	1/29/2014	2/10/2014
TW4-27	1/23/2014	2/4/2014
TW4-28	1/22/2014	2/4/2014
TW4-29	2/5/2014	2/17/2014
TW4-29R	2/4/2014	2/17/2014
TW4-30	1/23/2014	2/4/2014
TW4-31	1/23/2014	2/4/2014
TW4-32	1/22/2014	2/4/2014
TW4-33	1/30/2014	2/10/2014
TW4-34	1/23/2014	2/4/2014
TW4-60	2/6/2014	2/17/2014
TW4-65	1/22/2014	2/4/2014
TW4-70	1/29/2014	2/10/2014

All sample locations were sampled for Chloroform, Carbon Tetrachloride, Chloromethane, Methylene Chloride, Chloride and Nitrogen

Date in parantheses is the date the analytical data package was resubmitted by the laboratory. The package was resubmitted due to a laboratory error in the field sample ID.

Highlighted wells are continuously pumped.

[&]quot;R" following a well number deisgnates a rinsate sample collected prior to purging of the well of that number.

TW4-60 is a DI Field Blank, TW4-65 is a duplicate of TW4-28, and TW4-70 is a duplicate of MW-32.

Table 2 Chloroform Mass Removal Per Well Per Quarter

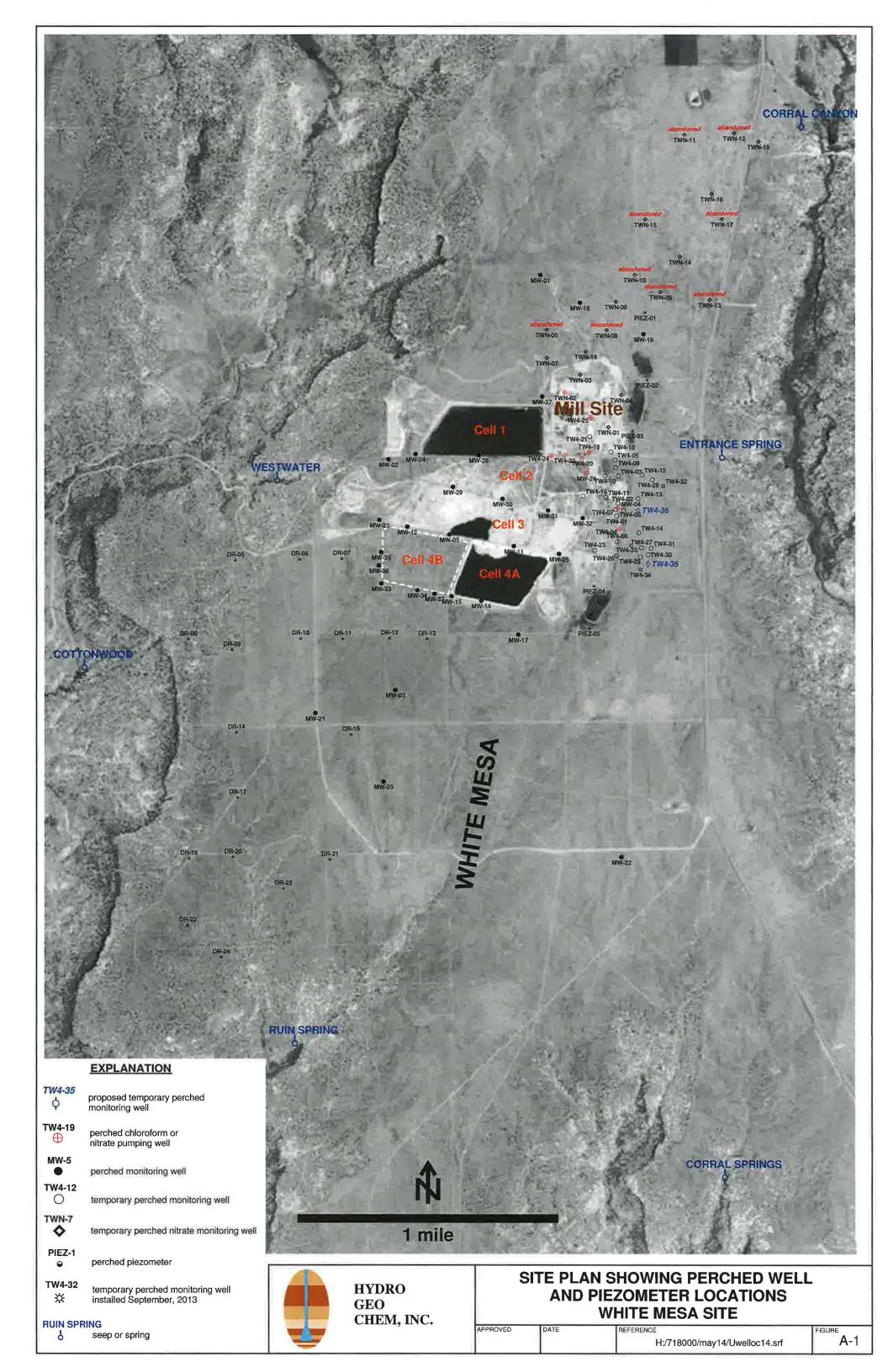
Quarter	MW-4 (lbs.)	TW4-15 (MW-26) (lbs.)	TW4-19 (lbs.)	TW4-20 (lbs.)	TW4-4 (lbs.)	TW4-22 (lbs.)	TW4-24 (lbs.)	TW4-25 (lbs.)	Quarter Totals (lbs.
Q1 2007*	36.8	12.9	150,2	87.0	NA	NA	NA	NA	286.9
Q2 2007	1.4	0.1	0.0	2.5	NA	NA	NA	NA	4.0
Q3 2007	2.2	0.8	2.9	3.1	NA	NA	NA	NA	9.0
Q4 2007	1.7	1.0	3.1	4.8	NA	NA	NA	NA	10.6
Q1 2008	1.7	0.4	4.6	7.2	NA	NA	NA	NA	13.8
Q2 2008	1.3	0.5	3.2	9.9	NA	NA	NA	NA	14.8
Q3 2008	1.2	0.3	15.9	9.3	NA	NA	NA	NA	26.8
Q4 2008	1.3	0.3	20.7	0.4	NA	NA	NA	NA	22.7
Q1 2009	1.7	0.4	4.3	3.6	NA	NA	NA	NA	10.0
Q2 2009	6.8	0.2	3.7	2.8	NA	NA	NA	NA	13.5
Q3 2009	1.5	0.4	11.1	5.5	NA	NA	NA	NA	18.5
Q4 2009	4.8	0.6	17.8	26.1	NA	NA	NA	NA	49.4
Q1 2010	0.9	0.4	2.7	0.4	NA	NA	NA	NA	4.5
Q2 2010	1.5	1.0	6.8	5.9	1.4	NA	NA	NA	16.5
Q3 2010	1.3	1.2	2.0	4.9	1.3	NA	NA	NA	10.6
Q4 2010	1.1	0.5	7.7	7.4	1.2	NA	NA	NA	17.9
Q1 2011	1.1	0.2	12.9	9.6	1.1	NA	NA	NA	24.9
Q2 2011	1.2	0.8	5.3	4.6	1.1	NA	NA	NA	13.1
Q3 2011	1.2	0.4	1.1	4.1	1.2	NA	NA	NA	8.1
Q4 2011	1.2	0.8	2.7	4.8	1.4	NA	NA	NA	10.9
Q1 2012	1.1	0.6	0.8	7.0	1.0	NA	NA	NA	10.5
Q2 2012	1.1	0.6	0.7	6.9	1,1	NA	NA	NA	10.4
Q3 2012	1.1	0.7	1.4	2.4	1.1	NA	NA	NA	6.7
Q4 2012	0.9	0.3	2.0	3.2	0.9	NA	NA	NA	7.3
Q1 2013	0.9	0.4	7.4	2.8	0.7	1.5	0.0	0.0	13.7
Q2 2013	0.9	0.9	3.9	4.4	0.7	2.7	0.0	0.0	13.5
Q3 2013	0.9	0.6	22.3	4.4	0.7	2.1	0.05	0.0	31.1
Q4 2013	0.8	0.3	3.2	2.5	0.7	2.8	0.07	0.0	10.37
Q1 2014	0.8	0.3	1.5	2.8	0.6	2.5	0.15	0.0	8.65
Well Totals (pounds)	80.3	27.9	321.8	240.3	16.3	11.6	0.3	0.0	698.6

^{*} Q1 2007 represents the cumulative total prior to and including Q1 2007.

Table 3 Well Pumping Rates and Volumes

	Volume of Water Pumped	
Pumping Well Name	During the Quarter (gals)	Average Pump Rate (gpm)
MW-4	69,833.8	4.4
MW-26	23,263.1	10.3
TW4-4	58,992.9	7.9
TW4-19	304,851.0	16.1
TW4-20	18,781.6	9.7
TW4-22	24,532.0	18.1
TW4-24	229,063.9	17.3
TW4-25	129,979.2	17.9
TWN-2	48,320.4	18.3

INDEX OF TABS


Tab A	Site Plan and Perched Well Locations White Mesa Site						
Tab B	Order of Sampling and Field Data Worksheets						
Tab C	Weekly and Monthly Depth to Water Data						
	Kriged Current Quarter Groundwater Contour Map, Capture Zone Map, Capture Zone Details nd Depth to Water Data						
Tab E	Kriged Previous Quarter Groundwater Contour Map						
Tab F	Hydrographs of Groundwater Elevations Over Time for Chloroform Monitoring Wells						
Tab G	G Depths to Groundwater and Elevations Over Time for Chloroform Monitoring Wells						
Tab H	H Laboratory Analytical Reports						
Tab I	Quality Assurance and Data Validation Tables						
	 I-1 Field Data QA/QC Evaluation I-2 Holding Time Evaluation I-3 Receipt Temperature Check 						
	I-4 Analytical Method Check						
	I-5 Reporting Limit Evaluation						
	I-6 Trip Blank Evaluation						
	I-7 QA/QC Evaluation for Sample Duplicates						
	I-8 QC Control Limits for Analyses and Blanks						
	I-9 Rinsate Check						
Tab J	Kriged Current Quarter Chloroform Isoconcentration Map						

Tab K Analyte Concentration Data Over Time

Tab L Chloroform Concentration Trend Graphs

Tab M CSV Transmittal Letter

Tab A
Site Plan and Perched Well Locations White Mesa Site

Tab B

Order of Sampling and Field Data Worksheets

Order of Contamination for 1st Quarter 2014 Chloroform Purging Event

	C	hloroform	ı	Water	Well		
Well	Sample time	Levels	Rinsate date/time	level	Depth		
TW4-03	1/22/19 0443	ND			141	TW4-03 R_01212014	8560
TW4-12	1003	ND		-	101.5		- 146
TW4-28	100%	ND		-	107		
TW4-32	1015	ND		•	115.1		
TW4-13	1023	ND			102.5		
TW4-14	1025	ND			93		
TW4-27	1/23/14 0742	ND		•	96		
TW4-30		ND			92.5		
	1/23/14 07.56	ND			106		
TW4-34		ND			97.2		
	1/23/14 08/5	ND			114		
TW4-08	1/23/14 0845	ND 2/	6/14 0825		125		
TW4-09	1/29/14 0740	ND			120		
MW-32	1/29/14 1305	ND			130.6	Bladder pump	
TW4-25	1/27/14 1338	ND			134.8	Cont. Pumping	
TW4-26		3.37			86		
TW4-06	1/24/4 0758	5.51			97.5		
TW4-16		13.4			142		
TW4-05		14.4			120		
TW4-24	1/27/14 1355	32.5			112.5	Cont. Pumping	
TW4-18		44.3			137.5		
TW4-33		126			87.9		
TW4-21		204			121		
TW4-29	215114 6000 DE	W1 260			93.5	TU4-29 R_02042014	10 1111
	elsily Desa	874			100		
TW4-19	1/27/14 1510	942			125	Cont. Pumping	
TW4-07	2/2/14 0910	1050			120		
TW4-01	ELEN PILLE	1280			110		
TW4-04	1/27/14 1433	1360			112	Cont. Pumping	
TW4-10	25/14 0934	1380			111		
MW-04		1410			124	Cont. Pumping	
MW-26	1/21/14 1420	1410			122.5	Cont. Pumping	
TW4-02		3740			120		
TW4-22	1/27/14 1403	13300			113.5	Cont. Pumping	
TW4-20		15700			106	Cont. Pumping	
	D.I. Blank 2/6/14	084	5				
		122/14 100)K				
		29/14 13	05				
Commen	its:						
27				_			
Name:				Date:			

15	See	instruction
-		

Description of Sampling Event: 15T Quarter Chlor	oform 2014				
2 storephon of Sampling 2 com	Sampler Name				
Location (well name): MW-04	and initials: Tanner Holliday /14				
Field Sample ID MW-04_01272014					
Date and Time for Purging 1/27/2014 and	Sampling (if different)				
Well Purging Equip Used: Dump or D bailer W	Tell Pump (if other than Bennet)				
Purging Method Used: 2 casings 3 casings					
Sampling Event Go Quarter & Chloroform Prev. V	Vell Sampled in Sampling Event MW-26				
pH Buffer 7.0 PH	Buffer 4.0 4.0				
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 124.00				
Depth to Water Before Purging 68.35 Casing Volume (V) 4" Well: 6 (.653h) 3" Well: 6 (.367h)					
Weather Cond. Sungy	26.4乙 Ext'l Amb. Temp. °C (prior sampling event) フ゜				
Time 1424 Gal, Purged O	Time Gal. Purged				
Conductance 1955 pH 6.87	Conductance pH				
Temp. °C [14.31	Temp. °C				
Redox Potential Eh (mV)	Redox Potential Eh (mV)				
Turbidity (NTU)	Turbidity (NTU)				
Time Gal. Purged	Time Gal. Purged				
Conductance pH	Conductance pH				
Temp. °C	Temp. °C				
Redox Potential Eh (mV)	Redox Potential Eh (mV)				
Turbidity (NTU)	Turbidity (NTU)				

Volume of Water Purged	0		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 4.3			Time to evac $T = 2V/Q =$		casing v	olumes (2V)		
Number of casing volumes	evacuated	l (if other	than two)	٥				
If well evacuated to dryness	, number	of gallons	s evacuated	0				
Name of Certified Analytica	al Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample		e Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	Z Z		3x40 ml		DE L	HCL	V	
Tutrients Tutrients	坳		100 ml		Ź	H2SO4		
leavy Metals			250 ml			HNO3		
Il Other Non Radiologics			250 ml			No Preserv.		
Fross Alpha			1,000 ml			HNO3		
Other (specify)	[2]	D	Sample volume		N			5≥
Chloride If preservative is used, specify Type and Quantity of Preservative: inal Depth 75.68 Sample Time 1425 See instruction								
Comment						har.		
Arrived on site at 142	22 -	Tanner a	nd Garrin present	to co	llect	samples.		
Arrived on site at 1422 Tanner and Garrin present to collect samples. Samples collected at 1425 Leff site at 1427 water was clear								
Continuous Pumping Well								

MW-04 01-27-2014

FIELD DATA WORKSHEET FOR GROUNDWATER					
Description of Sampling Event: 15T Quarter Chlor	otorm 2014				
Harmonia and the second and the seco	Sampler Name				
Location (well name): TW4-01	and initials: Tanner Holliday HH				
Field Sample ID					
Date and Time for Purging 2/4/2014 and	Sampling (if different) 2/5/2014				
Well Purging Equip Used: pump or bailer W	Tell Pump (if other than Bennet)				
Purging Method Used: 2 casings 3 casings					
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event TW4-07				
pH Buffer 7.0 pH	Buffer 4.0				
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 110.00				
Depth to Water Before Purging 64.90 Casing	Volume (V) 4" Well: 29.45 (.653h) 3" Well: 0 (.367h)				
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)				
Time 1417 Gal. Purged 33	Time 1418 Gal. Purged 44				
Conductance 2133 pH 6.17	Conductance Z138 pH 6.19				
Temp. °C [14.52	Temp. °C 74.52				
Redox Potential Eh (mV)	Redox Potential Eh (mV)				
Turbidity (NTU)	Turbidity (NTU) 83				
Time 1919 Gal. Purged 55	Time 6 1420 Gal. Purged 66				
1414 PH 6.21	1420 Conductance 2144 pH 6.23				
Temp. °C 14.52	Тетр. °С 14.59				
Redox Potential Eh (mV)	Redox Potential Eh (mV)				
Turbidity (NTU)	Turbidity (NTU)				

66		gallon(s)					
1					volumes (2V)		
evacuated	l (if other	than two)	0				
, number	of gallon	s evacuated	D				
al Labora	tory if Otl	ner Than Energy Labs	AWAL				
Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	tive Added
Y	N	specified below)	Y	N		Y	N
Y		3x40 ml		D29	HCL	I Z	
Ž.		100 ml		(A)	H2SO4	ď	
		250 ml			HNO3		
		250 ml			No Preserv.		
		1,000 ml			HNO3		
128		Sample volume		70			72
					•		ve:
	evacuated, number al Labora Sampl Y M	evacuated (if other s, number of gallon al Laboratory if Other Sample Taken Y N M D D D D D D D D D D D D	Time to evac T = 2V/Q = evacuated (if other than two) s, number of gallons evacuated al Laboratory if Other Than Energy Labs Sample Taken Y N Sample Vol (indicate if other than as specified below) M 100 ml 100 ml 250 ml 1,000 ml Sample volume	Time to evacuate two T = 2V/Q = 5.35 evacuated (if other than two) a, number of gallons evacuated al Laboratory if Other Than Energy Labs Sample Taken Sample Vol (indicate if other than as specified below) N Sample Gallons Sample Vol (indicate if other than as specified below) The sample Vol (indicate if other than as specified below) The sample volume Sample volume	Time to evacuate two casing of T = 2V/Q = 5.35 evacuated (if other than two) a, number of gallons evacuated al Laboratory if Other Than Energy Labs Sample Taken Sample Vol (indicate if other than as specified below) Y N 3x40 ml 3x40 ml	Time to evacuate two casing volumes (2V) T = 2V/Q = 5.35 evacuated (if other than two) a, number of gallons evacuated al Laboratory if Other Than Energy Labs Sample Taken Sample Vol (indicate if other than as specified below) Y N Specified below) Y N HCL HCL HOO ml D HCL HNO3 No Preserv. If preservative is used	Time to evacuate two casing volumes (2V) T = 2V/Q = 5.35 evacuated (if other than two) al Laboratory if Other Than Energy Labs Sample Taken Y N Specified below) Y N Sample Taken Sample Vol (indicate if other than as specified below) Y N HCL HCL HCL HNO3 I No Preserve. I HNO3 I HNO3

Final Depth 106.59

Sample Time

0923

Comment

See instruction

Arrived on site at 1411. Tanner and Garrin present for purge. Purge began at 1414
Purged well for a total of 6 minutes. Purge ended at 1420, water was
Purge ended at 1420 Last site at 1422. Arrived on site at 0917. Garrin present for Sampling. Depth to water was 65.20. Samples were collected at 0923. Left site at 0926.

TW4-01 02-04-2014

ATTACHMENT 1-2

-	
4	See instruction

FIELD DATA WORKSHEET I	
Description of Sampling Event: 15+ Quarter C	Wordform 2014
Location (well name): Tw4-02	Sampler Name and initials: Garrin Palmer 16P
Field Sample ID	
Date and Time for Purging 2/5/2014 and	Sampling (if different)
Well Purging Equip Used: D pump or D bailer V	Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
	Well Sampled in Sampling Event Tルソー10
	H Buffer 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft):
	g Volume (V) 4" Well: 35.26 (.653h) 3" Well: (.367h)
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1032 Gal. Purged 66	Time Gal. Purged
Conductance 3320 pH 6.45	Conductance pH
Temp. °С 14.54	Temp. °C
Redox Potential Eh (mV) 325	Redox Potential Eh (mV)
Turbidity (NTU) 56.2	Turbidity (NTU)
Time 0817 Gal. Purged 0	Time Og19 Gal. Purged D
Conductance 8224 pH 6.55	Conductance 3233 pH 2.54
Temp. °C [2.48]	Temp. °C 12.53
Temp. °C [2.48] Redox Potential Eh (mV)	
	Temp. °C 12.53

Volume of Water Purged	66		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11.0	ĺ		Time to evac $T = 2V/Q = $			olumes (2V)		
Number of casing volumes	evacuated	1 (if other	than two)	1.8	7			
If well evacuated to dryness	, number	of gallons	s evacuated	66				
Name of Certified Analytica	ıl Labora	tory if Oth	ier Than Energy Labs	Au	VAL			
Type of Sample		le Taken	Sample Vol (indicate if other than as		ered	Preservative Type		ative Added
	Y	N	specified below)	Υ _	N		Y	N
OCs	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		3x40 ml		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	HCL	NZI.	
utrients	这		100 ml		I⊠	H2SO4	X	
eavy Metals			250 ml			HNO3		
Il Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	Ø		Sample volume		×			Ç X
If preservative is used, specify Type and Quantity of Preservative:								
nal Depth 118.09 Sample Time 6818								
See instruction Arrived on site at 1030. Garrin and David Present for Purge. Purge began								
Arrived on site at	1030.	Garrin	and David	Hesev	~+ F	or purge. I	urge	began
at 1033. Purged well	1 for	a tota	al of 6 minu.	tes. P	urge	ended at to	34 L	vater
-					-		G.	
was clear. Left								
trrived on site at 0813	. Tanne	r and G	arrin present to co	llect s	amples	. Depth to we	ater wa	<
crived on site at 0813. Tanner and Garrin present to collect samples. Depth to water was 6.18. Samples bailed at 0818. Left site at 0820								

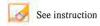
TW4-02 02-05-2014 Do not touch this cell (SheetName)

0	See	instruction
Section 1		

FIELD DATA WORKSHEET	FOR GROUNDWATER
Description of Sampling Event: 15T Quarter chl	oraform 2014
	Sampler Name
Location (well name): TW4-03	and initials: Tanner Holliday/TH
Field Sample ID 7w4-03_01222014	
Date and Time for Purging 1/21/2014 an	d Sampling (if different) 1/22/2014
Well Purging Equip Used: Dump or Dubailer	Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event TW4-03R
pH Buffer 7.0 7,0	H Buffer 4.0 4,0
Specific Conductance 199 µMHOS/ cm	Well Depth(0.01ft): 141.00
Depth to Water Before Purging 52.92 Casin	g Volume (V) 4" Well: 57.51 (.653h) 3" Well: 0 (.367h)
	3 Well. (.30/ll)
W. d. C. J.	5 .11 4 1 7 20 / 1 1/20
Weather Cond.	Ext'l Amb. Temp. °C (prior sampling event)
Time 0956 Gal. Purged 90	Time Gal. Purged
Conductance 6.67 pH 6.67	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV) Z5Z	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0943 Gal. Purged 0	Time 0999 Gal. Purged
Conductance 1572 pH 5.82	Conductance 1569 pH 5.86
Temp. °C 15.35	Temp. °C [15.31
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	After

Volume of Water Purged	90		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11.0 Time to evacuate two casing volumes (2V) $T = 2V/Q = 10.45$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness	, number	of gallons	s evacuated	90				
Name of Certified Analytica	al Labora	tory if Oth	ner Than Energy Labs	AWA	L			
Type of Sample		le Taken	Sample Vol (indicate if other than as		ered	Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	V		3x40 ml		শ্ব	HCL	[X]	
Iutrients	Ŋ.		100 ml			H2SO4	A	
leavy Metals			250 ml			HNO3		
II Other Non Radiologics			250 ml			No Preserv.		
Fross Alpha			1,000 ml			HNO3		
Other (specify)	[3]		Sample volume		[3]			2
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Sample Time 0943 See instruction								
	1 -	and and	Garcia accent I.	0	. 0			
Arrived on site at 0944. Tanner and Garrin present for purge Purge began at 0948								
Purged well for a total of 8 minutes and 15 seconds, Purged well dry. Nater was a little murky. Purge ended at 0956. Left site at 0959 Arrived on site at 0939 Tanner and Garrin present to collect samples. Depth to water was 52.80								
inter one a little and Parandal + age 1 10 14 1								
mus a little murky. Turge enaca at 0936. Lett Site at 0959								
trrived on site at 0939 Tanner and Garrin present to collect samples. Death to water was 52.80								
samples bailed at 0943						257		

TW4-03 01-21-2014 Do not touch this cell (SheetName)


2	1	See	instruction

Description of Sampling Event: 15T Quarter Chloro-Form 2014
Sampler Name
Location (well name): TW4-03R and initials: Tanner Holliday HH
Field Sample ID
Date and Time for Purging 1/21/2014 and Sampling (if different)
Well Purging Equip Used: Dpump or D bailer Well Pump (if other than Bennet)
Purging Method Used:
Sampling Event Quarter Chloroform Prev. Well Sampled in Sampling Event
pH Buffer 7.0 7.0 pH Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm Well Depth(0.01ft):
Depth to Water Before Purging O Casing Volume (V) 4" Well: O (.653h) 3" Well: O (.367h)
Weather Cond. Ext'l Amb. Temp. °C (prior sampling event) O
Time O927 Gal. Purged 143 Time Gal. Purged
Conductance 1.1 pH 8.42 Conductance pH
Temp. °C [6.3] Temp. °C
Redox Potential Eh (mV) Redox Potential Eh (mV)
Turbidity (NTU) Turbidity (NTU)
Time Gal. Purged Gal. Purged
Conductance pH Conductance pH
Temp. °C
Redox Potential Eh (mV) Redox Potential Eh (mV)
Turbidity (NTU) Turbidity (NTU)

Volume of Water Purged ISO gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) $T = 2V/Q = 6$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness	, number	of gallons	s evacuated	٥				
Name of Certified Analytica	ıl Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	TÝ.		3x40 ml		M	HCL	×	
utrients	Ď		100 ml		Ž	H2SO4	X	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	N.		Sample volume		[XI			Z
Chloride If preservative is used, specify Type and Quantity of Preservative:								
nal Depth O Sample Time 0928 See instruction								
omment			1 -	_				
Arrived on site at 0910	1	anner and	d Garrin present to	rinso	ite.			
Arrived on site at 0910 Tenner and Gerrin present for rinsate. Rinsate began at 0915 Pumped 50 Gallons of soap water and 100 Gallons of D.I. Water. Rinsate ended and samples collected at 0928								

TW4-03R 01-21-2014 Do not touch this cell (SheetName)

Description of Sampling Event: 1st Quarter Chlorofor	m 2014				
	Sampler Name				
Location (well name): TWY-0Y	and initials: Tanner Holliday 774				
Field Sample ID TW4-04_01272014					
Date and Time for Purging 1/27/2014 and	Sampling (if different)				
Well Purging Equip Used: Dpump or D bailer W	Vell Pump (if other than Bennet)				
Purging Method Used: 2 casings 3 casings					
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event W-04 MW-04				
pH Buffer 7.0 7.0	H Buffer 4.0 4.0				
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 112.00				
Depth to Water Before Purging 69.99 Casing Volume (V) 4" Well: 27.43 (.653h) 3" Well: 0 (.367h)					
Weather Cond. Swn	Ext'l Amb. Temp. °C (prior sampling event) 7°				
Time 432 Gal. Purged 0	Time Gal. Purged				
Conductance 2276 pH 6.79	Conductance pH				
Temp. °C	Temp. °C				
Redox Potential Eh (mV) 208	Redox Potential Eh (mV)				
Turbidity (NTU) 5.5	Turbidity (NTU)				
Time Gal. Purged	Time Gal. Purged				
Conductance pH	Conductance pH				
Temp. °C	Temp. °C				
Redox Potential Eh (mV)	Redox Potential Eh (mV)				
Turbidity (NTU)	Turbidity (NTU)				

Volume of Water Durged			1 gallon(s)					
Volume of Water Purged gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 7.6 Time to evacuate two casing volumes (2V) $T = 2V/Q = 0$								
Number of casing volumes	evacuated	d (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	sevacuated	D				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	D)		3x40 ml		D)	HCL	□	
utrients	ΙŽΊ		100 ml		ĽŽ	H2SO4	Ď.	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	垃		Sample volume		124			158
If preservative is used, specify Type and Quantity of Preservative: Sample Time 1433								
omment See instruction								
Arrived on site at 1429 Tanner and Garrin present to collect samples								
Samples collected at 1433 Left site at 1435								
Continuous Pumping Well								

TW4-04 01-27-2014

15	See instruction
1000	out monderno.

FIELD DATA WORKSHEET H	
Description of Sampling Event: IST Quarter Chlo	Sampler Name
Location (well name): TW4-05	and initials: Tanner Holliday/TH
Field Sample ID TW4-05_01302014	
Date and Time for Purging 1/29/2014 and	Sampling (if different) 1/36/2014
Well Purging Equip Used: Dump or Dumbailer	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quartery Chloroform Prev.	Well Sampled in Sampling Event
pH Buffer 7.0 7.0 pl	H Buffer 4.0 4.0 4.0 MW-3≥
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 120.00
Depth to Water Before Purging 60.80 Casing	Volume (V) 4" Well: 38, 45 (.653h) (.367h)
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 092) Gal. Purged 66	Time 0922 Gal. Purged 77
Conductance 1513 pH 6,49	Conductance ISIS pH 6.49
Temp. °C	Temp. °C [5.2]
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0923 Gal. Purged 88	Time 0924 Gal. Purged 99
Conductance 1514 pH 6.49	Conductance 53 pH 6.49
Temp. °C 15.17	Temp. °C [15.19]
Redox Potential Eh (mV)	Redox Potential Eh (mV) 263
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged	99		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) $T = 2V/Q = 7.02$								
Number of casing volumes	evacuated	d (if other	than two)	0				
If well evacuated to dryness Name of Certified Analytica		-		AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preservat	tive Added
	Y	N	specified below)	Y	N		Y	N
OCs	131		3x40 ml		図	HCL	X	
utrients	竹		100 ml		Ď	H2SO4	Ľ	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	CZ0		Sample volume		Z			×
Chloride						If preservative is used Type and Quantity of		ve:

Comment

Final Depth 62.53

See instruction

Arrived on site at 0912. Tanner and Garrin present for purge. Purge began at 0915. Purged Well for a total of 9 minutes. Water was a milky white color Purge ended at 0924. Left site at 0927. Arrived on site at 0714. Garrin present to collect samples. Depth to water was 60,98. Samples were bailed at 0718. Left site at 0722.

0718

TW4-05 01-29-2014 Do not touch this cell (SheetName)

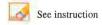
Sample Time

0	See	instruction
Control of the last		

FIELD DATA WORKSHEET	FOR GROUNDWATER
Description of Sampling Event: 1ST Quarter	Chlorotorm
	Sampler Name
Location (well name): TW4-06	and initials: Tanner Holliday /TH
Field Sample ID	
Date and Time for Purging 1/28/2019 and	ad Sampling (if different) 1/29/2014
Well Purging Equip Used: Dump or bailer	Well Pump (if other than Bennet) Grundfos
Purging Method Used: 2 casings 2 casings	
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event TW4-Z6
pH Buffer 7.0 7.0	oH Buffer 4.0
Specific Conductance 499 µMHOS/ cm	Well Depth(0.01ft): 97.50
Depth to Water Before Purging 69.35 Casin	ag Volume (V) 4" Well: 18.38 (.653h) 3" Well: 0 (.367h)
	3 Well. 8 (.30/fl)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 7°
Time 1345 Gal. Purged 27.50	Time Gal. Purged
Conductance 4019 pH 6.31	Conductance pH
Temp. °C 14.88	Temp. °C
Redox Potential Eh (mV) 287	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0758 Gal. Purged 0	Time 6759 Gal. Purged 6
Conductance 2064 pH 5.74	Conductance 2071 pH 5.78
Temp. °C 12.95	Temp. °C \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	After

Volume of Water Purged	27.5	50	gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) S/60 = 11.0 $T = 2V/Q = 3.34$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytica	ıl Labora	tory if Otl	ner Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml		(i)	HCL	E	
Nutrients	ř		100 ml		Ď	H2SO4	Ď	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	76		Sample volume		10			ď
If preservative is used, specify Type and Quantity of Preservative: Final Depth 45.23 Sample Time 0758								
Comment See instruction								
Arrived on site at 1341 Tanner and Garrin present for purge. Purge began at 1343 Purged well for a total of Z minutes and 30 seconds. Purged well dry! water was a little orange. Purge ended at 1345. Left site at 1348 Arrived on site at 0754 Tanner and Garrin present to collect samples. Depth to								
water was 69.60 samples bailed at 0758 1 ft site at 0800								

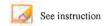
TW4-06 01-28-2014 Do not touch this cell (SheetName)


1	See	instruction
-		

FIELD DATA WORKSHEET FOR GROUNDWATER					
Description of Sampling Event: IST Quarter Chlor	oform 2014				
	Sampler Name				
Location (well name): Tw4-07	and initials: Tonner Holliday TH				
Field Sample ID					
Date and Time for Purging 2/4/2014 and	Sampling (if different) 2/5/2019				
Well Purging Equip Used: Dump or Dailer W	Vell Pump (if other than Bennet)				
Purging Method Used: 2 casings 3 casings	Grundfas				
Sampling Event Quarterly Chlorotorm Prev. V	Vell Sampled in Sampling Event ΤωΨ-11				
pH Buffer 7.0 7.0 pH	I Buffer 4.0 식.o				
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 120.00				
Depth to Water Before Purging 65.70 Casing Volume (V) 4" Well: 35.45 (.653h) 3" Well: 0 (.367h)					
v					
Weather Cond. Overcast	Ext'l Amb. Temp. °C (prior sampling event)				
Time 1396 Gal. Purged 69.50	Time Gal. Purged				
Conductance 15.95 pH 6.85	Conductance pH				
Temp. °C 14.50	Temp. °C				
Redox Potential Eh (mV)	Redox Potential Eh (mV)				
Turbidity (NTU)	Turbidity (NTU)				
Time O909 Gal. Purged O	Time O910 Gal. Purged O				
Conductance V670 pH 6.70	Conductance 1649 pH 6.68				
Temp. °C 12.22.	Temp. °C 12.16				
Redox Potential Eh (mV)	Redox Potential Eh (mV)				
Turbidity (NTU)	Turbidity (NTU)				
Before	After				

Volume of Water Purged	69.1	50	gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. $S/60 = 11.0$]		Time to evac $T = 2V/Q =$		casing v	volumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	1.96				
If well evacuated to drynes	s, number	of gallon	s evacuated	69.50				
Name of Certified Analytic	cal Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	_ Y	N	specified below)	Y	N		Y	N
OCs	N N		3x40 ml		7	HCL	₩	
utrients	K		100 ml		M	H2SO4	129	
eavy Metals			250 ml			HNO3		
Il Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	囟		Sample volume		M			Ø
If preservative is used, specify Type and Quantity of Preservative: Sample Time 5915 See instruction								
Arrived on site at 133 Purged Well for a toto pater was mostly clear Present. Depth to	tal of c. Led	6 min 7 site	utes 20 seconds at 1348. Arri	. Purg	ed we	il dry!. Purge te at 0904.	ended . Garriv	at 1345
Left site at 091	5.							

TW4-07 02-04-2014 Do not touch this cell (SheetName)



De la company de	2011
Description of Sampling Event: 15T Quarter Chlor	
T (11) 1 70	Sampler Name and initials: Tanner Holliday/TH
Location (well name): TW4-08	and initials: Tanner Holliday/TH
Field Sample ID TW4 - 08_01232014	
Date and Time for Purging 1/22/2014 and	Sampling (if different) 1/23/2014
Well Purging Equip Used: pump or bailer W	ell Pump (if other than Bennet)
Purging Method Used: 2 casings 2 casings	
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event TW4-23
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 125.00
Depth to Water Before Purging 65.15 Casing	Volume (V) 4" Well: 39.08 (.653h) (.367h)
	3 Well: (.30/h)
Weather Cond. P. Hu Clouds	Ext'l Amb. Temp. °C (prior sampling event)
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Tarily Claudy	
Weather Cond. Partly Cloudy Time 1504 Gal. Purged 66	Ext'l Amb. Temp. °C (prior sampling event) 6° Time 1505 Gal. Purged 77
Tarily Claudy	
Time 1504 Gal. Purged 66	Time 1505 Gal. Purged 77
Time 1504 Gal. Purged 66 Conductance 3318 pH 7.09	Time 1505 Gal. Purged 77 Conductance 3317 pH 7.09
Time 1504 Gal. Purged 66 Conductance 3318 pH 7.09 Temp. °C 14.80	Time 1505 Gal. Purged 77 Conductance 3317 pH 7.09 Temp. °C 14.80
Time 1504 Gal. Purged 66 Conductance 3318 pH 7.09 Temp. °C 14.80 Redox Potential Eh (mV) 102	Time 1505 Gal. Purged 77 Conductance 3317 pH 7.09 Temp. °C 14.80 Redox Potential Eh (mV) 161
Time 1504 Gal. Purged 66 Conductance 3318 pH 7.09 Temp. °C 14.80 Redox Potential Eh (mV) 102 Turbidity (NTU) 200	Time 1505 Gal. Purged 77 Conductance 3317 pH 7.09 Temp. °C 14.80 Redox Potential Eh (mV) 161 Turbidity (NTU) 199
Time 1504 Gal. Purged 66 Conductance 3318 pH 7.09 Temp. °C 14.80 Redox Potential Eh (mV) 102 Turbidity (NTU) 200 Time 1506 Gal. Purged 88	Time 1505 Gal. Purged 77 Conductance 33)7 pH 7.09 Temp. °C 14.80 Redox Potential Eh (mV) 161 Turbidity (NTU) 199 Time 1507 Gal. Purged 79
Time 1504 Gal. Purged G6 Conductance 3318 pH 7.09 Temp. °C 14.80 Redox Potential Eh (mV) 102 Turbidity (NTU) 200 Time 1506 Gal. Purged 88 Conductance 3314 pH 7.10	Time 1505 Gal. Purged 77 Conductance 3317 pH 7.09 Temp. °C 14.80 Redox Potential Eh (mV) 161 Turbidity (NTU) 199 Time 1507 Gal. Purged 99 Conductance 3316 pH 7.11
Time 1504 Gal. Purged 66 Conductance 3318 pH 7.09 Temp. °C 14.80 Redox Potential Eh (mV) 102 Turbidity (NTU) 200 Time 1506 Gal. Purged 88 Conductance 3314 pH 7.10 Temp. °C 14.79	Time 1505 Gal. Purged 77 Conductance 3317 pH 7.09 Temp. °C 14.80 Redox Potential Eh (mV) 161 Turbidity (NTU) 199 Time 1507 Gal. Purged 99 Conductance 3316 pH 7.11 Temp. °C 14.81

Volume of Water Purged	99		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) $T = 2V/Q = 7.10$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytica	al Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample	Sampl	le Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	色		3x40 ml		16	HCL	尥	
Nutrients	尥		100 ml		Ö	H2SO4	Ď	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	E		Sample volume	ū	Ď			Ď
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 75.00 Sample Time 0845								
Comment Arrived on site at 1456 Tanner and Garrin present for purge. Purge began at 1458								
Arrived on site at 1450	- Tan	ner and	d Garrin present	tor	bride	· Purge bego	no at	1458
Purged well for a t little murky. Left	otal o	f 9 r	ninutes. Purge =	ended	at 15	107 Water	was a	τ.
Arrived on site at 0841.	Tanner	and Go	arrin present to col	llect sai	mples.	Depth to water	r was	65.80
Arrived on site at 0841. Tanner and Garrin present to collect samples. Depth to water was 65.80 Samples bailed at 0845 Left site at 0847								

TW4-08 01-22-2014

Description of Sampling Event: 1st Ovarter Chloroform 2014 Re Sample					
Location (well name): TWH-08 Sampler Name and initials: Garrin Palmer GP					
Field Sample ID TW4-08_02062014 RESample					
Date and Time for Purging 2/5/2014 and Sampling (if different) 2/6/2014					
Well Purging Equip Used: Description Description					
Purging Method Used: 2 casings 3 casings					
Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event TW4-02					
pH Buffer 7.0 pH Buffer 4.0 4.0					
Specific Conductance 999 µMHOS/ cm Well Depth(0.01ft): 125,00					
Depth to Water Before Purging 65.35 Casing Volume (V) 4" Well: 38.95 (.653h)					
3" Well: (.367h)					
Weather Cond. Partly Cloudy Ext'l Amb. Temp. °C (prior sampling event) 20					
Tail Try Cloudy					
Time 1207 Gal. Purged 55 Time 1208 Gal. Purged 66					
Conductance 3383 pH 6.95 Conductance 3392 pH 6.97					
Temp. °C 14.51 Temp. °C 14.51					
Redox Potential Eh (mV) 137 Redox Potential Eh (mV) 134					
Turbidity (NTU) 240					
Time 1209 Gal. Purged 77 Time 1210 Gal. Purged 88					
Conductance 3400 pH 6.96 Conductance 3398 pH 6.97					
Temp. °C 14.53					
Redox Potential Eh (mV) 131 Redox Potential Eh (mV) 129					
Turbidity (NTU) 238 Turbidity (NTU) 244					

Volume of Water Purged Pumping Rate Calculation	88	3	gallon(s)					
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) $S/60 = \boxed{11}$ Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated Name of Certified Analytical Laboratory if Other Than Energy Labs								
Type of Sample		le Taken	Sample Vol (indicate if other than as specified below)	Filte		Preservative Type	Preserva	ative Added
VOCs	\S		3x40 ml		N N	HCL	Z	
Nutrients	[2k]		100 ml		₩ ₩	H2SO4	[X	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	1		Sample volume		[7	IA (OU		泫
If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 70.25		Sample T	ime 0825	1				
Arrived on site at 1155. Garrin and David Present For sampling. Purge began at 1202. Purged well for a total of 8 minutes. Purge ended at 1210. Water was clear. Left site at 1213. Arrived on site at 0821. Tanner and Garrin present to collect samples Depth to water was 65.88. Samples bailed at 0825. Left site at 0827								
	-,							

TW4-08 02-15-3104

FIELD DATA WORKSHEET FOR GROUNDWATER						
Description of Sampling Event: 15T Quarter Chlorof	Form 2014					
	Sampler Name					
Location (well name): TW4-09	and initials: Tanner Holliday/TH					
Field Sample ID TW4-09_01292014						
Date and Time for Purging 1/28/2014 and	Sampling (if different) 1/29/2014					
Well Purging Equip Used: Dump or bailer W	ell Pump (if other than Bennet)					
Purging Method Used: 2 casings 2 casings						
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event					
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0					
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 12.0.00					
Depth to Water Before Purging 58.55 Casing	Depth to Water Before Purging 58.55 Casing Volume (V) 4" Well: 40.12 (.653h) 3" Well: 0 (.367h)					
	<u> </u>					
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)					
Time 1253 Gal. Purged 66	Time 1264 Gal. Purged 77					
Conductance Z375 pH G40	Conductance 2376 pH 6.44					
Temp. °C [14,92	Temp. °C					
Redox Potential Eh (mV)	Redox Potential Eh (mV) 2/5					
Turbidity (NTU)	Turbidity (NTU)					
Time 12.55 Gal. Purged 88	Time 1236 Gal. Purged 99					
Conductance 2380 pH 6.42	Conductance 2385 pH 6.42					
Temp. °C 14.92	Temp. °C 14.92					
Redox Potential Eh (mV)	Redox Potential Eh (mV)					
Turbidity (NTU) 230	Turbidity (NTU)					

Volume of Water Purged	99		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) $T = 2V/Q = 7.29$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytica	ıl Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample		e Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	K		3x40 ml		M	HCL	M	
utrients	P		100 ml			H2SO4	M	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	K		Sample volume		t			161
Chloride If preservative is used, specify Type and Quantity of Preservative:								
anal Depth 75,75 Sample Time 0740								
omment See instruction								
Arrived on site at 12	243 7	Tanner a	nd Garrin present	for F	ourge	Purge bega	n at	1247
Purged well for a Purge ended at 12	total 1 256, L	of 9 eff si	minutes, water of te at 1259	Nas Mi	urky	7		
Arrived on site at 0736 Tanner and Garrin present to collect samples. Depth to water was 58.58 samples bailed at 0740 Left site at 0742								

TW4-09 01-28-2014 Do no

1	See	instruction

Description of Sampling Event: IST Quarter Chlo	rotorm 2014
	Sampler Name
Location (well name): TW4-10	and initials: Tanner Holliday 1714
Field Sample ID TW4-10_02052014	
Date and Time for Purging 2/4/2014 and	Sampling (if different) 2/5/2014
Well Purging Equip Used: Dump or Dumbailer	Vell Pump (if other than Bennet) Grandfos
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event TW4-01
pH Buffer 7.0 7.0 pl	H Buffer 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 111,00
Depth to Water Before Purging 58.40 Casing	(.653h)
	3" Well: 0 (.367h)
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1447 Gal, Purged 55	Time Gal. Purged
Conductance 2499 pH 5.97	Conductance pH
Temp. °C 14.74	Temp. °C
Redox Potential Eh (mV) 286	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time O933 Gal. Purged O	Time O934 Gal. Purged O
Conductance 2398 pH 6.15	Conductance 2408 pH 6,12
Temp. °C 12.07	Temp. °C 12.00
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	After

htrata | Templato |1732| Prançed 9/25/2013 6-53 AM Irom 2040500018

Volume of Water Purged	55		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. $S/60 = 11.0$]		Time to evac $T = 2V/Q =$	uate two	casing	volumes (2V)		
Number of casing volumes	evacuated	l (if other	than two)	160				
If well evacuated to drynes	s, number	of gallon	s evacuated	55				
Name of Certified Analytic	al Labora	lory if Ot	her Than Energy Labs	AWAL	,			
Type of Sample S		e Taken	Sample Vol (indicate if other than as	Filtered		Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
OC's	N		3x40 ml		S	HCL	TXII	
lutrients	[25]		100 ml		2	H2SO4	A	D
Icavy Metals			250 ml			HNO3		
all Other Non Radiologics			250 ml			No Preserv.		
iross Alpha			1,000 ml			HNO3		
Other (specify)	Ø		Sample volume		M			[3]
Chloride						If preservative is used Type and Quantity of	-	ve:
omment		Sample T	ime <u>0934</u>			See :	instructio	n
Arrived on site at 143 Purged well for a tot water was a litt Garrin present to were collected	e mur	5 minus ky L et sa	tes. Purged we eff site at 14 mplcs. Depth	11 dr 50. A	y!	Purge ender	d at 1	447 28.
			this cell (SheetName)					

ATTACHMENT 1-2

0	See instruction	
A. Charles		

FIELD DATA WORKSHEET F	The state of the s						
Description of Sampling Event: 15T Quarter Chlor							
Location (well name): Tw4-11	Sampler Name and initials: Tanner Holliday / TH						
	and initials.						
Field Sample ID TWY-1L02052014							
Date and Time for Purging 2/4/2014 and	Sampling (if different) Z/5/zo14						
Well Purging Equip Used: pump or bailer	Vell Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly Chloroform Prev. V	Well Sampled in Sampling Event TW4-29						
pH Buffer 7.0 7.8 pH	H Buffer 4.0						
Specific Conductance 499 µMHOS/ cm	Well Depth(0.01ft): 100.00						
Depth to Water Before Purging 58.30 Casing Volume (V) 4" Well: 27.23 (.653h) 3" Well: 0 (.367h)							
Weather Cond. Snowing	Ext'l Amb. Temp. °C (prior sampling event)						
Time [31] Gal. Purged 33	Time 3317 Gal. Purged 44						
Conductance 1650 pH 6.52	Conductance 1645 pH 647						
Temp. °C 4.20	Тетр. °С [14.19]						
Redox Potential Eh (mV) 276	Redox Potential Eh (mV) Z67						
Turbidity (NTU)	Turbidity (NTU)						
Time 1313 Gal. Purged 55	Time 1314 Gal. Purged 66						
Conductance 1645 pH 6.50	Conductance 1649 pH 6.51						
Temp. °C	Temp. °С 14.25						
Redox Potential Eh (mV) 264	Redox Potential Eh (mV) Z63						
Turbidity (NTU)	Turbidity (NTU)						

Volume of Water Purged	66		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11.0			Time to evac $T = 2V/Q =$		casing v	volumes (2V)		
Number of casing volumes	evacuate	d (if other	than two)	0				
If well evacuated to dryness	, number	of gallon	s evacuated	٥				
Name of Certified Analytica	ıl Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample	Sample Taken		Sample Vol (indicate if other than as	Filtered		Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
VOCs	和		3x40 ml		1	HCL	8	
Nutrients	K		100 ml		Ď	H2SO4	6	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	160		Sample volume		퇸			乜
Chloride						If preservative is used Type and Quantity of	_	tive:
Final Depth 96,01		Sample T	Cime 0859					
Comment						lu Del	instructio	
Arrived on site at 130	٧- ٢	Tanner .	and Garrin present	for po	inge.	Purge began	at 1	308
Purged well for a to	stal o	P 6 m	rinutes. water we	13 C/4	ear (Clear.		
							Garrin	
Quantity Control of Direct	. 100	3116	WI ISIT, APPRICE	0	3116	olina uses Fi	9 46	Samples
Purge ended at 1314. Int site at 1317. Arrived on site at 0860. Garrin Prosent for sampling. Depth to water before sampling was 59.46. Samples								
were collected a	r 08.	59. Le	eft site at o	1902.				

TW4-11 02-04-2014

1	See instruction
_09	See instruction

FIELD DATA WORKSHEET H	FOR GROUNDWATER					
Description of Sampling Event: 15T Quarter Chloro-	FORM 2014					
	Sampler Name					
Location (well name): Tw4-12	and initials: Tanner Holliday /TH					
Field Sample ID TW4-12_01222014						
Date and Time for Purging 1/21/2014 and	Sampling (if different)					
Well Purging Equip Used: Dpump or D bailer	Vell Pump (if other than Bennet) Grund fos					
Purging Method Used:						
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event TW4-63					
pH Buffer 7.0 7.0 pH	H Buffer 4.0					
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): [0], 50					
Depth to Water Before Purging 47.80 Casing Volume (V) 4" Well: 38.33 (.653h) 3" Well: 0 (.367h)						
Weather Cond.	Ext'l Amb. Temp. °C (prior sampling event) 1°					
Time 1026 Gal. Purged 55	Time 1027 Gal. Purged 66					
Conductance 1198 pH 7.06	Conductance 1201 pH 7.06					
Temp. °C 14.78	Temp. °C 14.79					
Redox Potential Eh (mV)	Redox Potential Eh (mV) 220					
Turbidity (NTU) 5.8	Turbidity (NTU) 5.9					
Time lozg Gal. Purged 77	Time 1029 Gal. Purged 88					
Conductance 1203 pH 7,06	Conductance 1200 pH 7.07					
Temp. °С 14.79	Temp. °C					
Redox Potential Eh (mV) 212	Redox Potential Eh (mV) Z12					
Turbidity (NTU) 5.9	Turbidity (NTU) 5.9					

Volume of Water Purged	88		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11.0	(Time to evac $T = 2V/Q = $		casing v	rolumes (2V)		
Number of casing volumes of	evacuated	d (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	s evacuated	D				
Name of Certified Analytica	ıl Laborai	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sample Taken		Sample Vol (indicate if other than as	Filtered		Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N_
OCs	Ľ		3x40 ml		×	HCL	□	
utrients	[2]		100 ml		M	H2SO4	Z	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	[3 <u>4</u>]		Sample volume		(3)			⊠
Chloride						If preservative is used Type and Quantity of		tive:
inal Depth 78.20		Sample T	ime 1003			See	instructio	on
omment								
Arrived on site at 101	8	Tanner	and Garrin preser	it For A	ourge.	Purge began		
Purged well for a to	tal of	8 minu	tes. Purge ended	at 102	.9. W	later was clear	10	02)
Left site at 1032								
Arrived on site at 1000			Garrin present to	collect.	sample	s. Depth to w	ater wo	13 42,55
Samples bailed at 100:	3 L	eft sit	te at 1004					

TW4-12 01-21-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUNDWATER

FIELD DATA WORKSHEE	T FOR GROUNDWATER
Description of Sampling Event: 15T Quarter Chlo	rotorm 2014
	Sampler Name
Location (well name): TW4-13	and initials: Tanner Holliday MH
Field Sample ID TW4-13_01222014	
Date and Time for Purging 1/21/2014	and Sampling (if different)
Well Purging Equip Used: Dump or Dailer	Well Pump (if other than Bennet)
Purging Method Used: 2 casings 2 casings	
Sampling Event Quarterly Chloroform Pre	v. Well Sampled in Sampling Event TW4-32
pH Buffer 7.0 7.0	pH Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 102.50
Depth to Water Before Purging 48.97 Cas	sing Volume (V) 4" Well: 34.95 (.653h) (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 7°
Time 1344 Gal. Purged 55	Time Gal. Purged
Conductance 1777 pH [6.7]	Conductance pH
Temp. °C 14.89	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged 6	Time Gal. Purged
Conductance 1756 pH 6,77	Conductance 1770 pH 6.76
Temp. °C 12.35	Temp. °C 12.15
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	After

Volume of Water Purged	35		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11.0]		Time to evac $T = 2V/Q =$			olumes (2V)		
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated 55								
Name of Certified Analytics	al Labora	tory if Oth	er Than Energy Labs	AWA	L			
Type of Sample		e Taken	Sample Vol (indicate if other than as		ered	Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	Ŋ		3x40 ml			HCL	X	
utrients	Ď		100 ml		129	H2SO4	7	
eavy Metals			250 ml			HNO3		
Il Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	N		Sample volume		C ^A			2
inal Depth 100,03		Sample T	ime 1023			If preservative is used Type and Quantity of		ive:
omment See instruction								
Arrived on site at 1331	(T.	oner and	C + L	OUTO	P	or here to	33 a	
3.72 (4) [52]	6 'A	iner kny	Garrin present Tot	Poug.		of Degan at 1	221	
Purged well for a to Purge ended at Arrived on site at 1018	stal o	F 5 1	minutes, Purged u	sell dri	4. W	ater was cle	ar	
Proper ended at	1344	12-1	site at 1241	•	7.		1	
A L L LANG	1	1	Comin present to	4-1100	samol	es Death to war	ter was	47.55
Arrived on site at 1018	1 / N	nner and	Galliu hisself 10	Wiles?	Zampi	w. repin		
samples bailed at	1023	Left	site at 1025					

TW4-13 01-21-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL IELD DATA WORKSHEET FOR GROUNDWATER

5	See	instruction

FIELD DATA WORKSHEET FOR GROUNDWATER							
Description of Sampling Event: 1st Quarter Chlor	oform 2014						
	Sampler Name						
Location (well name): TW4-14	and initials: Tanner Holliday HH						
Field Sample ID TW4-14_01222014							
Date and Time for Purging 1/21/2014 and	d Sampling (if different) 1/22/2014						
Well Purging Equip Used: Dump or Dailer	Well Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event TW4-13						
pH Buffer 7.0 7.0 p	H Buffer 4.0						
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 93.00						
Depth to Water Before Purging 24.69 Casing	g Volume (V) 4" Well: 5.42 (.653h) 3" Well: 6 (.367h)						
	(100711)						
	-						
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)						
J							
Time 1409 Gal. Purged Z.75	Time Gal. Purged						
Conductance 4558 pH 5.78	Conductance pH						
Temp. °C 15,50	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU) 53	Turbidity (NTU)						
Time 1028 Gal. Purged O	Time 1029 Gal. Purged O						
Conductance 4575 pH 6.74	Conductance 4600 pH 6.74						
Temp. °С 12,40	Temp. °C 12.17						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Before	After						

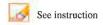
Volume of Water Purged	2.7	5	gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11.0			Time to evac $T = 2V/Q =$		casing v	volumes (2V)		
Number of casing volumes e	evacuated	d (if other	than two)	.46				
If well evacuated to dryness	, number	of gallon	s evacuated	2,75				
Name of Certified Analytica	l Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample		le Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	N		3x40 ml		<u> </u>	HCL	⅓	
Nutrients	<u>N</u>		100 ml		128	H2SO4	X	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv,		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	[29]		Sample volume		Ø			M
Chloride						If preservative is used Type and Quantity of	-	ive:
Final Depth 91.25		Sample T	ime 1028	Į.		- Saa	in atmostic	
Comment						Marin .	instructio	
Arrived on site at 1401	5	Tanner	and Garrin presen	nt for	purge	· Puras bears	1 1	408
Arrived on site at 1402 Purged well for a total Purged well dry. Let	al of it sit	45 S	seconds. Purge &	ended a	×+ 14	09. water was	murk	J.
Arrived on site at 1025	Tann	er and (farrin present to co	ollec' So	imples.	Dep Th To water	was	04.60
samples bailed at 1028	Le	tt site	at 1031					

TW4-14 01-21-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2

See instructio	п
	See instructio

WHITE MESA URAN	NIUM MILL OR GROUNDWATER
Description of Sampling Event: 15T Quarter Chlorofo	
	Sampler Name
Location (well name): MW-Z4	and initials: Tanner Holliday /TH
Field Sample ID	
Date and Time for Purging 1/27/2014 and	Sampling (if different)
Well Purging Equip Used: Dpump or D bailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. V	Well Sampled in Sampling Event TW4-20
pH Buffer 7.0 pH	H Buffer 4.0
Specific Conductance 499 µMHOS/ cm	Well Depth(0.01ft): 122.50
Depth to Water Before Purging 68.65 Casing	Volume (V) 4" Well: 35.16 (.653h)
	3" Well: (.367h)
	-
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)
Time 1419 Gal. Purged 0	Time Gal. Purged
Conductance 3533 pH 6.55	Conductance pH
Temp. °С 14.36	Temp. °C
Redox Potential Eh (mV) 219	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)


Volume of Water Purged	δ		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 10.5			Time to evac $T = 2V/Q = $		casing v	rolumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	ð				
If well evacuated to dryness	, number	of gallons	s evacuated	٥				
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	13		3x40 ml		X	HCL	⋈	
utrients	[2]		100 ml		ZÝ.	H2SO4	Ø	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	7		Sample volume		DB			⊠
Chloride						If preservative is used Type and Quantity of		tive:
inal Depth 81.52		Sample T	ime 1420			See	instructio	nn
omment								
Arrived on site at 141	5 -	Tanner	and Garrin prese	ent to	colle	et samples		
Samples collected at	1420		Left site at	142	7			
	(nater.	was clear					
	_							
	ont	การการ	s Pumping	Well				

MW-26 01-27-2014

Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL

Description of Sampling Event: IST Quarter Chlorof	orm 2014
	Sampler Name
Location (well name): TW4-16	and initials: Tanner Holliday TH
Field Sample ID Tw4-16_01292014	
Date and Time for Purging 1/28/2014 and	I Sampling (if different)
Well Purging Equip Used: pump or bailer	Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event TW4-06
pH Buffer 7.0 7,0 pl	H Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 142.00
Depth to Water Before Purging 62.75 Casing	g Volume (V) 4" Well: 51.75 (.653h) 3" Well: 6 (.367h)
Weather Cond. Sunns	Ext'l Amb. Temp. °C (prior sampling event) 7°
Time 1440 Gal. Purged 88	Time 1441 Gal. Purged 99
Conductance 3638 pH 6.52	Conductance 3641 pH 6.54
Temp. °C 14,77	Temp. °C 14.75
Redox Potential Eh (mV) 200	Redox Potential Eh (mV) 200
Turbidity (NTU)	Turbidity (NTU)
Time 1442 Gal. Purged 110	Time 1443 Gal. Purged 121
Conductance 3648 pH 6.55	Conductance 3642 pH 6.55
Temp. °C 14.7L	Temp. °C 14.74
Redox Potential Eh (mV) ZO1	Redox Potential Eh (mV) 203
Turbidity (NTU)	Turbidity (NTU) 58

Volume of Water Purged	121		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11.0			Time to evac $T = 2V/Q =$		casing v	volumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	s evacuated	0				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	E		3x40 ml		E	HCL	M	
utrients	E		100 ml		K	H2SO4	M	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		8
ross Alpha			1,000 ml			HNO3		
ther (specify)	Œ		Sample volume		K			M
If preservative is used, specify Type and Quantity of Preservative:								
inal Depth 137.65		Sample T	ime 0805					
omment							instructio	
Arrived on site at 14	30 Ta	nner and	. Garrin present	for pur	ge. f	urge began at	1432	
Purged well for a t Clear. Left site a	otal or	F 11 m	inutes. Purge	ended	at 1	443. water wa	s mos	#4
Arrived on site at 0802	Tant	ner and	Garrin present to	collect	t sam	ples. Depth t	o wat	er
was 62.97 Samples								

TW4-16 01-28-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUNDWATER

FIELD DATA WORKSHEET FOR GROUNDWATER						
Description of Sampling Event: 15T Quarter Chloroform 2014						
Sampler Name						
Location (well name): MW-32 and initials: Tanner Holliday /TH						
Field Sample ID						
Date and Time for Purging 1/24/2014 and Sampling (if different)						
Well Purging Equip Used: Dump or Dump or Well Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings						
Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event TW4-16						
pH Buffer 7.0 7.0 pH Buffer 4.0 4.0						
Specific Conductance 999 µMHOS/ cm Well Depth(0.01ft): 132.50						
Depth to Water Before Purging 74.48 Casing Volume (V) 4" Well: 37.88 (.653h) 3" Well: 0 (.367h)						
Weather Cond. Partly Cloudy Ext'l Amb. Temp. °C (prior sampling event) 0°						
Time 1302 Gal. Purged 77.46 Time 1303 Gal. Purged 77.68						
Conductance 3862 pH 6.40 Conductance 3858 pH 6.39						
Temp. °C 14.18 Temp. °C 14.16						
Redox Potential Eh (mV) 195 Redox Potential Eh (mV) 195						
Turbidity (NTU) 18 Turbidity (NTU) 19						
Time 1304 Gal. Purged 77.40 Time 1305 Gal. Purged 78.12						
Conductance 3881 pH 6.39 Conductance 3857 pH 6.38						
Temp. °C 14.18						
Redox Potential Eh (mV) 195 Redox Potential Eh (mV) 199						
Turbidity (NTU) Turbidity (NTU) ZD						

Volume of Water Purged	78.	.12	gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. $S/60 = $			Time to evac $T = 2V/Q =$			volumes (2V)		
Number of casing volumes	evacuate	d (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	s evacuated	0				
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAI				
Type of Sample	Samp	le Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	DZI		3x40 ml		Ŋ	HCL	12	
Nutrients	<u> </u>		100 ml		×	H2SO4	Ž	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	DS	0	Sample volume		Ň			☑
Chloride						If preservative is used Type and Quantity of		ive:
Final Depth 80.30		Sample T	ime 1365			See	instructio	n ·
Comment						10001		
Arrived on site at o-	70 0	Tanner	Holliday present	for	purge	and Sampli	ng ev	ent
Purge began at 070							•	
Purge ended and water was				05 L	eft.	site at 1315).	

MW-32 01-29-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL ELD DATA WORKSHEET FOR GROUNDWATER

FIELD DATA WORKSHEET FOR GROUNDWATER							
Description of Sampling Event: 15T Quarter Chloro	20.00						
T 1 (11) [11]	Sampler Name						
Location (well name): \TW4-18	and initials: Tanner Holliday / TH						
Field Sample ID TW4-18_01302014							
Date and Time for Purging 1/29/2014 and	Sampling (if different) 1/30/2014						
Well Purging Equip Used: Dump or bailer	Vell Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly Chloroform Prev. V	Well Sampled in Sampling Event Tw4-05						
pH Buffer 7.0 7.0 pH	H Buffer 4.0 4.0						
Specific Conductance 499 µMHOS/ cm	Well Depth(0.01ft): 137.50						
Depth to Water Before Purging 61.60 Casing	(.653h) 3" Well: 49.56 (.653h) (.367h)						
	5 Well (.50711)						
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 3°						
141.0							
Time 1011 Gal. Purged 88	Time 1012. Gal. Purged 99						
Conductance 1623 pH 6.37	Conductance 1607 pH 6.38						
Temp. °C 15.23	Temp. °C 15.25						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU) 583	Turbidity (NTU)						
Time 1013 Gal. Purged 110	Time 1014 Gal. Purged 121						
Conductance 1580 pH 6.38	Conductance 576 pH 639						
Temp. °C 15.27	Temp. °C [5.29]						
Redox Potential Eh (mV) 265	Redox Potential Eh (mV)						
Turbidity (NTU) 578	Turbidity (NTU) 570						

Volume of Water Purged	121		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11.0]		Time to evac $T = 2V/Q =$		casing v	volumes (2V)		
Number of casing volumes	evacuate	d (if other	than two)	0				
If well evacuated to drynes	s, numbei	r of gallon	s evacuated	0				
Name of Certified Analytic	al Labora	ntory if Oth	ner Than Energy Labs	AWAL				
Type of Sample	Samp!	le Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	Ď		3x40 ml		X	HCL	D3	
Nutrients			100 ml		75	H2SO4	178	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	İΖ3		Sample volume	0	N			
Chloride	-					If preservative is used Type and Quantity of	_	tive:
Final Depth 62.10]	Sample T	ime 0733	l		See	instructio	on
Comment								
Arrived on site at 09	59 -	Tanner a	nd Garrin present	for a	purge	· Puras ha	an at	1003
rurged well for a to	otal of	- 11 Y	minules. Water u	vas mi	IKy W	hite. Purae er	ided a	J 1014
Left site at 1017.	Arrive	d on	site at 072	7. Gas	rrin	present to	colle	ct
Samples. Depth +	0 Wa	ter u	Jaes 61.30. Sam	ples i	vere	bailed at a	0733.	Left
0700								

TW4-18 01-29-2014 Do n

Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL

1	
	See instruction

FIELD DATA WORKSHEET FO	OR GROUNDWATER
Description of Sampling Event: 15T Quarter Chle	protorm 2014
	Sampler Name
Location (well name): TW4-19	and initials: Janner Holliday TH
Field Sample ID TW4-19_01272014	
Date and Time for Purging 1/27/14 1/27/2014 and	Sampling (if different)
Well Purging Equip Used: Dpump or D bailer W	ell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event TW4-04
pH Buffer 7.0 PH	Buffer 4.0 4,0
Specific Conductance 499 µMHOS/ cm	Well Depth(0.01ft): 125.00
Depth to Water Before Purging 68.74 Casing	Volume (V) 4" Well: 36.73 (.653h) 3" Well: 6 (.367h)
Weather Cond. Sunn 3	Ext'l Amb. Temp. °C (prior sampling event)
Time 1509 Gal. Purged 8	Time Gal. Purged
Conductance Z783 pH 6.67	Conductance pH
Temp. °C [14.4Z]	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged	0		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 14.0 Number of casing volumes	evacuate	l (if other	Time to evac T = 2V/Q =	o o	casing v	volumes (2V)		
If well evacuated to dryness				٥				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample		e Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	X		3x40 ml		141	HCL	M	
utrients	笋		100 ml			H2SO4		
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	150		Sample volume		191			M
Chloride						If preservative is used Type and Quantity of		ive:
nal Depth 71.91	•	Sample Ti					instructio	on
Arrived on site at 15	605. T	anner an	d Garcin Present	to	collect	Samples		
(1)	1		0 11 1					
Samples collected wat	15	10.	Left site at	1512	_			
wat	èr w	as c	lear					
		-3-5	CON					
C	ontir	140y	s Pumping	Well				

TW4-19 01-27-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL ELD DATA WORKSHEET FOR GROUNDWATER


FIELD DATA WORKSHEET I	
Description of Sampling Event: 15T Quarter Chlorofo	Sampler Name
Location (well name): TW4-Z8	and initials: Tanner Holliday 174
Field Sample ID	
Date and Time for Purging 1/27/2014 and	Sampling (if different)
Well Purging Equip Used: Dump or Dailer	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event TW4-27
pH Buffer 7.0 7.6	H Buffer 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 106.00
Depth to Water Before Purging 64.60 Casing	Volume (V) 4" Well: 27.03 (.653h) 3" Well: 0 (.367h)
	5 Well. (.30711)
Weather Cond.	Ext'l Amb. Temp. °C (prior sampling event) 7°
Time 1411 Gal. Purged 0	Time Gal. Purged
Conductance 4065 pH 6.46	Conductance pH
Temp. °C 15.ZЧ	Temp. °C
Redox Potential Eh (mV) 233	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged	٥		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 10.0			Time to evac $T = 2V/Q =$		casing v	olumes (2V)		
Number of casing volumes	evacuated	l (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	s evacuated	0				
Name of Certified Analytics	al Laborat	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	D		3x40 ml		[3]	HCL	[2]	
utrients	ĽŽ!		100 ml		[2]	H2SO4	[2]	
eavy Metals			250 ml			HNO3		
Il Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	ĽŽI		Sample volume		73			Z
Chloride						If preservative is used	d, specify	
						Type and Quantity of	Preservat	ive:
* 1								
nal Depth 69.99		Sample T	ime 1412					
omment						See See	instructio	on
Arrived on site at 1	407	Tanne	er and Garrin F	resen?	to	collect san	nples.	
samples collected a		wate	er was mostly	(Clea	ar			
			Pumping					

TW4-20 01-27-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUNDWATER

Description of Sampling Event: 1st Quarter Chloroform 2014
Sampler Name
Location (well name): TW4-21 and initials: Tanner Holliday/TH
Field Sample ID TWY-21_02052014
Date and Time for Purging 2/4/2014 and Sampling (if different) 2/5/2014
Well Purging Equip Used: pump or bailer Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings
Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event
pH Buffer 7.0 PH Buffer 4.0 4.0
Specific Conductance 499 µMHOS/ cm Well Depth(0.01ft): 121.00
Depth to Water Before Purging 61.52 Casing Volume (V) 4" Well: 38.84 (.653h) 3" Well: 0 (.367h)
Weather Cond. Overcast Ext'l Amb. Temp. °C (prior sampling event) -Z°
Time 1049 Gal. Purged 66 Time 1050 Gal. Purged 77
Conductance 3900 pH 6.57 Conductance 3909 pH 6.59
Temp. °C [5.70] Temp. °C [15.72]
Redox Potential Eh (mV) 274 Redox Potential Eh (mV) 274
Turbidity (NTU) Turbidity (NTU) 10,5
Time 1051 Gal. Purged 88 Time 1052 Gal. Purged 99
Conductance 3911 pH 6.60 Conductance 3913 pH 6.60
Temp. °C 5.72
Redox Potential Eh (mV) 270 Redox Potential Eh (mV) 247
Turbidity (NTU) Turbidity (NTU) 10.8

Volume of Water Purged	99		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11.0	į		Time to evac $T = 2V/Q =$		casing	volumes (2V)		
Number of casing volumes of	evacuated	d (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	s evacuated	٥				
Name of Certified Analytica	al Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	知		3x40 ml		X	HCL	Ø	
utrients	区		100 ml		应	H2SO4	E	
eavy Metals			250 ml			HNO3		
II Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
other (specify)	180		Sample volume		忆			Ø
Chloride						If preservative is used Type and Quantity of		tive:
omment		Sample T	ime <u>0825</u>			See	instructio	on
	10	T	cood C i neac	ent for	ר מענ	de D 1		1043
trrived on site at 10° urged well for a Left site at 1055 Depth to water words.	total . Arri	of 9 ucd a	minutes. Purg a site at 0820	e ende 1. Garr	ed at in pr	1052. water costs	was co	lear. mples,

TW4-21 02-04-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL IELD DATA WORKSHEET FOR GROUNDWATER

7	
- C	See instruction

FIELD DATA WORKSHEET F	
Description of Sampling Event: 15T Quarter Chlo	rotorm 2014
	Sampler Name
Location (well name): TW4-22_0	and initials: Tanner Holliday MH
TW4-22	
Field Sample ID TW4-22_01272014	
D. I. S. I. Wanta ANI	a 11 110 1100)
Date and Time for Purging 1/27/2014 and	Sampling (if different)
Well Purging Equip Used: Dump or D bailer W	Vell Pump (if other than Bennet)
Wen Turging Equip Osed. [2] pump of [2] baner	Continuous
Purging Method Used: 2 casings 3 casings	201111100-3
	Thu all
Sampling Event Quarterly Chlorotorm Prev. V	Vell Sampled in Sampling Event
pH Buffer 7.0 7.0	H Buffer 4.0 나,ㅇ
pri Builei 7.0	Tourier 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 113,50
Depth to Water Before Purging 80.50 Casing	V-1 (I) 48 W-11 - 1 - 1 - 1 (521)
Depth to Water Before Purging 80.50 Casing	Volume (V) 4" Well: 21.54 (.653h) (.367h)
	5 Well. (.30711)
Weather Cond.	Ext'l Amb. Temp. °C (prior sampling event) 7°
Weather Cold. Sunny	, , , , , , , , , , , , , , , , , , , ,
Time 1402 Gal. Purged	Time Gal. Purged
Conductance 5847 pH 6.60	Conductance pH
Conductance 5847 pH 6.60	Conductance
Temp. °C 14.33	Temp. °C
Redox Potential Eh (mV) 고니니	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Time Gai. Turgeu	Time Gal. Furget
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged	٥		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 18.0	1		Time to evace $T = 2V/Q = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$		casing v	olumes (2V)		
Number of casing volumes of	evacuated	d (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	s evacuated	0				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample		le Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	凶		3x40 ml		<u>16</u>	HCL	Æ	
utrients	M		100 ml		70	H2SO4	É	
eavy Metals			250 ml			HNO3		
Il Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	K		Sample volume		包			×
Chloride						If preservative is used Type and Quantity of		
nal Depth 109,93	ĺ	Sample T	Time 1403			See	instructio	on
omment			T					
Arrived on site at 13.			and Garrin present		lect s	samples		
samples collected at	140	13 L water	.eff site at was clear	1405				
	(2 on	tinuous Pu	mpiń	g b	Jell		

TW4-22 01-27-2014

Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL DATA WORKSHEET FOR CROUNDWATER

FIELD DATA WORKSHEET F	
Description of Sampling Event: 15T Quarter Chlor	otorm zo14
	Sampler Name
Location (well name): TW4-23	and initials: Tanner Holliday/TH
Field Sample ID TW4-23_01232014	
Date and Time for Purging 1/22/2014 and	Sampling (if different) 1/23/2014
Well Purging Equip Used: Dpump or bailer	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. V	Well Sampled in Sampling Event \
pH Buffer 7.0 7.0	H Buffer 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 114.00
Depth to Water Before Purging 64.85 Casing	(.653h) (.367h) Volume (V) 4" Well: 32.09 (.653h)
	(0.57.1)
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1432 Gal. Purged 55	Time 1433 Gal. Purged 66
Conductance 3688 pH 6.39	Conductance 3684 pH 6.34
Temp. °C [4.18]	Temp. °C
Redox Potential Eh (mV) 175	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 1434 Gal. Purged 77	Time 1435 Gal. Purged 88
Conductance 3666 pH 6.34	Conductance 366Z pH 6.32
Temp. °C 14.24	Temp. °C 14.25
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11.0]		Time to evac $T = 2V/Q =$			volumes (2V)		
Number of casing volumes	evacuated	l (if other	than two)	0				
If well evacuated to dryness	s, number	of gallons	sevacuated	0				
Name of Certified Analytics	al Laborat	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sample	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs .	i ii		3x40 ml		囟	HCL	ΙŽĬ	
lutrients	The state of the s		100 ml		M	H2SO4	ř	
leavy Metals			250 ml			HNO3		
Il Other Non Radiologics			250 ml			No Preserv.		
Fross Alpha			1,000 ml			HNO3		
Other (specify)	d		Sample volume		凼			×
Chloride If preservative is used, specify Type and Quantity of Preservative:								
inal Depth 84.90]	Sample T	ime 0815	l				
Comment					0	halar 3	instructio	
Arrived on site at	1424	TANNE	r and Garrin pr	esent	tor b	urge. Purge	Degan	at
1427 Purged well water cleared a litt Arrived on site at 0811	for a	total	of 8 minutes.	water	had 1435	an orange co	loration).
WILL OLLINER & TITL	1/110	Misori	1 mg and	1	1-0.	LETI SIIC A	, 107	2F 42
Arrived on site at 0811	Tanner	and Ga	rrin present to coll	ect san	iples.	Depth to water	- was	65.06
Samples bailed at 08	15 L	eft si	te at 0817					

TW4-23 01-22-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUNDWATER

1/	
1	See instruction

Description of Sampling Event: 1st Quarter Chlorosorm 2014
Description of Sampling Event: 1st Quarter Chlorosorm 2014 Sampler Name
Location (well name): TU4-Z4 and initials: Tanner Holliday 1717
Field Sample ID TW4-24_01272614
Date and Time for Purging 1/27/2014 and Sampling (if different)
Well Purging Equip Used: Dump or Dump bailer Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings
Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event TW4-25
pH Buffer 7.0 7.0 pH Buffer 4.0 4.0
Specific Conductance 499 µMHOS/ cm Well Depth(0.01ft): 112,50
Depth to Water Before Purging 64.11 Casing Volume (V) 4" Well: 31.59 (.653h) 3" Well: 0 (.367h)
Weather Cond. Sunny Ext'l Amb. Temp. °C (prior sampling event) 8°
Time 354 Gal. Purged o Time Gal. Purged
Conductance 5890 pH 6.37 Conductance pH
Temp. °C 14.59 Temp. °C
Redox Potential Eh (mV) Redox Potential Eh (mV)
Turbidity (NTU) Turbidity (NTU)
Time Gal. Purged Gal. Purged
Conductance pH Conductance pH
Temp. °C Temp. °C
Redox Potential Eh (mV) Redox Potential Eh (mV)
Turbidity (NTU) Turbidity (NTU)

Volume of Water Purged	0		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 18.3			Time to evac $T = 2V/Q = $	uate two	casing	volumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	sevacuated	D				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample		le Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs			3x40 ml		129	HCL	Z	
utrients	D)		100 ml		Ż	H2SO4	Ø	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
other (specify)	123		Sample volume		凶			Ŋ
Chloride						If preservative is used Type and Quantity of		ive:
inal Depth 68,52		Sample T	ime 13.55			G.		
omment						See	instructio	on
Arrived on site at 134	19 7	anner an	d Garrin present	to col	lect:	Samples		
						,		
samples collected at	1322		ett site at 1:	357				
	W	ater	was dear					
Continuou	s Pi	mpin	a well					
Continuous Pumping well								

TW4-24 01-27-2014

Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL D DATA WORKSHEET FOR GROUNDWATER

111		
N	See instruction	ļ

Date and Time for Purging \(\frac{1}{27/2014} \) and Sampling (if different) Well Purging Equip Used: \(\frac{1}{2} \) pump or \(\precedit \) bailer Well Pump (if other than Bennet) Purging Method Used: \(\precedit \) 2 casings \(\precedit \) 3 casings Sampling Event \(\frac{1}{2} \) Chlorotorm Prev. Well Sampled in Sampling Event \(\frac{1}{2} \) Tuy-0 \(\frac{8}{2} \) pH Buffer 7.0 \(\frac{7}{2} \) 7.0 Specific Conductance \(\frac{1}{2} \) 4" Well: \(\frac{1}{2} \) 6.653h) 3" Well: \(\frac{1}{2} \) (.653h) 3" Well: \(\frac{1}{2} \) (.653h) Time \(\frac{1}{2} \) 337 \(\frac{1}{2} \) Gal. Purged \(\frac{1}{2} \) Conductance \(\frac{1}{2} \) PH Temp. \(\frac{1}{2} \) Conductance \(\frac{1}{2} \) PH Redox Potential Eh (mV) \(\frac{1}{2} \) Turbidity (NTU) Turbidity (NTU) \(\frac{1}{2} \) 7"	FIELD DATA WORKSHEET FOR	GROUNDWATER				
Location (well name): TWY-25 and initials: TAME Holliday/TH Field Sample ID TWY-25_01272014 Date and Time for Purging 1/27/2014 and Sampling (if different) Well Purging Equip Used: Dump or Dealer Well Pump (if other than Bennet) Purging Method Used: Decay a casings Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event PH Buffer 7.0 7.0 pH Buffer 4.0 4.0 Specific Conductance 499 µMHOS/cm Well Depth(0.01ft): 134-80 Depth to Water Before Purging 59.89 Casing Volume (V) 4" Well: 48.91 (.653h) 3" Well: O (.367h) Weather Cond. Sunny Ext'l Amb. Temp. °C (prior sampling event) 7° Time 1337 Gal. Purged 6 Conductance 2900 pH 6.74 Temp. °C 15.74 Redox Potential Eh (mV) 267 Turbidity (NTU) 1.9	Description of Sampling Event: 15T Quarter Chloroforn					
Field Sample ID TW4-25_01272014 Date and Time for Purging 1/27/2014 and Sampling (if different) Well Purging Equip Used: Dump or Dailer Well Pump (if other than Bennet) Purging Method Used: Date casings 3 casings Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event TW4-08 PH Buffer 7.0 7.0 pH Buffer 4.0 Well Depth(0.01ft): 134.80 Depth to Water Before Purging S9.89 Casing Volume (V) 4" Well: 48.91 (.653h) 3" Well: O (.367h) Weather Cond. Swnty Time 133-7 Gal. Purged 6 Conductance 2900 pH 6.71 Temp. °C (prior sampling event) 7° Redox Potential Eh (mV) 267 Turbidity (NTU) Turbidity (NTU) Turbidity (NTU) Turbidity (NTU) Turbidity (NTU) Turbidity (NTU)		Sampler Name				
Date and Time for Purging 1/27/2019 and Sampling (if different) Well Purging Equip Used: Dump or Dailer Well Pump (if other than Bennet) Purging Method Used: Casings Casings Sampling Event Quarter Chloroform Prev. Well Sampled in Sampling Event Thy-0 8 pH Buffer 7.0 7.0 pH Buffer 4.0 PH Buffer 4.0 PH Buffer 4.0 PH Buffer 4.0 PH Buffer 7.0 PH Buffer 7.0 PH Buffer 7.0 PH Buffer 4.0 PH Buf	Location (well name): TW4-25	and initials:				
Well Purging Equip Used: pump or bailer Well Pump (if other than Bennet) Purging Method Used: 2 casings 3 casings Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event Physics Purging Event Physics Phy	Field Sample ID TW4-25-01272014					
Purging Method Used: 2 casings 3 casings Sampling Event Qwarterly Chloroform Prev. Well Sampled in Sampling Event Thy-o 8 pH Buffer 7.0 7.0 pH Buffer 4.0 Y.0 Specific Conductance 999	Date and Time for Purging 1/27/2019 and San	npling (if different)				
Sampling Event Qwarterly Chloroform Prev. Well Sampled in Sampling Event TW4-0 8 pH Buffer 7.0 7.0 pH Buffer 4.0 Y.0 Specific Conductance 949 μMHOS/ cm Well Depth(0.01ft): 134.80 Depth to Water Before Purging 54.89 Casing Volume (V) 4" Well: 48.91 (.653h) 3" Well: 0 (.367h) Ext'l Amb. Temp. °C (prior sampling event) 7° Time Gal. Purged Conductance PH Temp. °C 15.74 Temp. °C Redox Potential Eh (mV) Turbidity (NTU) Turbidity (NTU) Turbidity (NTU)	Well Purging Equip Used: Dump or D bailer Well I	Pump (if other than Bennet)				
pH Buffer 7.0 7.0 pH Buffer 4.0 Ψ.Ο Specific Conductance 999 μMHOS/ cm Well Depth(0.01ft): 134.8δ Depth to Water Before Purging \$\frac{59.89}{29.89}\$ Casing Volume (V) 4" Well: 48.9] (.653h) 3" Well: 0 (.367h) Weather Cond. \$\frac{59.89}{29.89}\$ Ext'l Amb. Temp. °C (prior sampling event) 7° Time \$\frac{1337}{37}\$ \$\frac{6}{30.9}\$ Conductance \$\frac{2900}{2900}\$ pH \$\frac{6.71}{3}\$ Temp. °C \$\frac{15.74}{15.74}\$ Temp. °C \$\frac{80}{15.74}\$ Redox Potential Eh (mV) \$\frac{1.9}{2.90}\$ \$\frac{1.9}{2.90}\$ \$\frac{1.9}{2.90}\$ Turbidity (NTU) \$\frac{1.9}{2.90}\$ \$\frac{1.9}{2.90}\$ \$\frac{1.9}{2.90}\$ \$\frac{1.9}{2.90}\$	Purging Method Used: 2 casings 3 casings					
Specific Conductance 999	Sampling Event Quarterly Chloroform Prev. Well	Sampled in Sampling Event TW4-08				
Depth to Water Before Purging \$\Sq.89\$ Casing Volume (V) 4" Well: 48.9] (.653h) (.367h) Weather Cond. \$\Sunny\$ Ext'l Amb. Temp. °C (prior sampling event) 7° Time \$\Sq.2900\$ pH 6.7\ Time \$\Gal. \text{Purged}\$ \$\Conductance \text{pH}\$ Temp. °C \$\Sq.74\ \$\Temp. °C\$ \$\Redox \text{Potential Eh (mV)}\$ \$\Text{Perp. °C}\$ \$\Redox \text{Potential Eh (mV)}\$ Turbidity (NTU) \$\sq.99\$ \$\Sq.28\ \$\Text{Turbidity (NTU)}\$ \$\Text{Turbidity (NTU)}\$	pH Buffer 7.0 7.0 pH Bu	ffer 4.0 4.0				
Sunn Ext'l Amb. Temp. °C (prior sampling event) 7°	Specific Conductance 999 µMHOS/ cm W	ell Depth(0.01ft): 134.80				
Time 1337 Gal. Purged 6 Time Gal. Purged Conductance 2900 pH 6.71 Conductance pH Temp. °C 15.74 Temp. °C Redox Potential Eh (mV) 267 Redox Potential Eh (mV) Turbidity (NTU) Turbidity (NTU)						
Time 1337 Gal. Purged 6 Time Gal. Purged Conductance 2900 pH 6.71 Conductance pH Temp. °C 15.74 Temp. °C Redox Potential Eh (mV) 267 Redox Potential Eh (mV) Turbidity (NTU) Turbidity (NTU)						
Conductance 2900 pH 6.71 Conductance pH Temp. °C 15.74 Temp. °C Redox Potential Eh (mV) Redox Potential Eh (mV) Turbidity (NTU)	Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 7°				
Conductance 2900 pH 6.71 Conductance pH Temp. °C 15.74 Temp. °C Redox Potential Eh (mV) Redox Potential Eh (mV) Turbidity (NTU)						
Temp. °C 15.74 Temp. °C Redox Potential Eh (mV) 267 Redox Potential Eh (mV) Turbidity (NTU) 19 Turbidity (NTU)	Time 1337 Gal. Purged 6	me Gal. Purged				
Redox Potential Eh (mV) 267 Turbidity (NTU) 19 Redox Potential Eh (mV) Turbidity (NTU)	Conductance 2900 pH 6.71 Co	onductance pH				
Turbidity (NTU) Turbidity (NTU)	Temp. °С 15.74 Те	emp. °C				
	Redox Potential Eh (mV) 267	edox Potential Eh (mV)				
Time Gal Purged Time Gal Purged	Turbidity (NTU)	arbidity (NTU)				
Time Gail Farget	Time Gal. Purged Ti	me Gal. Purged				
Conductance pH Conductance pH	Conductance pH Co	onductance pH				
Temp. °C	Temp. °C	emp. °C				
Redox Potential Eh (mV) Redox Potential Eh (mV)	Redox Potential Eh (mV)	edox Potential Eh (mV)				
Turbidity (NTU) Turbidity (NTU)	Turbidity (NTU)	arbidity (NTU)				

Volume of Water Purged gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm. $S/60 = 18.0$]		Time to evac $T = 2V/Q =$		casing v	volumes (2V)		
Number of casing volumes	evacuate	d (if other	than two)	0				
If well evacuated to dryness	s, number	r of gallons	s evacuated	0				
Name of Certified Analytica	al Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample		le Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	担		3x40 ml		K	HCL	N.	
Nutrients	也		100 ml		K	H2SO4	为	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	内		Sample volume		N			心
Chloride If preservative is used, specify								
Type and Quantity of Preservative:								
Final Depth 70.1 Sample Time 1338								
Comment See instruction								
Arrived on site at 1334 Toner and Garrin present to collect samples								
Samples collected at	1338	L	eft site at	1342				
	wati	er wo	us clear					
Continuous Pumping Well								

TW4-25 01-27-2014

Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUNDWATER

6	See	instruction

Description of Sampling Event: 15T Quarter Chlo	ratorm 2014
Description of Sampling Dient.	Sampler Name
Location (well name): TW4-26	and initials: Tanner Hoiliday MH
Field Sample ID TW4-26_01292014	
Date and Time for Purging 1/28/2014 an	d Sampling (if different) 1/29/2014
Well Purging Equip Used: Dump or D bailer	Well Pump (if other than Bennet) Grundias
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event TW4-09
pH Buffer 7.0 7.0	H Buffer 4.0
Specific Conductance 449 µMHOS/ cm	Well Depth(0.01ft): 86.00
Depth to Water Before Purging 63.25 Casin	g Volume (V) 4" Well: 14.85 (.653h) 3" Well: 0 (.367h)
	3 Wen. 0 (.307h)
Weather Cond. Sunny	Ext'l Amb. Temp. "C (prior sampling event)
Time [1320] Gal. Purged [19.25]	Time Gal. Purged
Conductance 6437 pH 3.65	Conductance pH
Temp. °C 14.60	Temp. °C
Redox Potential Eh (mV) 453	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0750 Gal. Purged C	Time 0751 Gal. Purged 0
Conductance 3681 pH 4.42	Conductance 36.87 pH 4.39
Temp. °C 13.91	Temp. °C 13.81
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	After

Volume of Water Purged 19.25 gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 1) 0]		Time to evac $T = 2V/Q =$			volumes (2V)		
Number of casing volumes				1.29				
If well evacuated to drynes Name of Certified Analytic		- 1		19.25 AWA				
ivalic of Certified Alialytic			Sample Vol (indicate					
Type of Sample		e Taken	if other than as		ered	Preservative Type		ative Added
100	Y	N	specified below)	Y	N	VIOY.	Y	N
VOCs	□ □		3x40 ml		Ż	HCL	X	
Nutrients			100 ml		N C	H2SO4		
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	V		Sample volume		S			
Chloride If preservative is used, specify Type and Quantity of Preservative: Final Depth 8401 Sample Time 0750								
Comment Arrived on site at 1317 Tanner and Garrin present for purge Purge began at 1319								
Arrived on site at 1317 Purged Well for a total water was mostly elected Arrived on site at or was 63.36 samples	of of ar. Pur 147 Tai	I min	ate 45 Seconds led at 1321. Let d Garrin present	of site	ged w at	1323 Samples. Dept		water
	Do not touch this cell (SheetName)							

ATTACHMENT 1-2 WHITE MESA URANIUM MILL ELD DATA WORKSHEET FOR GROUNDWATER

FIELD DATA WORKSHEET F	OR GROUNDWATER
Description of Sampling Event: IST Quarter chl	oroform 2014
	Sampler Name
Location (well name): TW4-27	and initials: Tanner Holliday/TH
Field Sample ID TW4-27_01232014	
Date and Time for Purging 1/22/2014 and	Sampling (if different)
Well Purging Equip Used: Dpump or D bailer W	Vell Pump (if other than Bennet) Grand Fos
Purging Method Used: 2 casings 3 casings	W
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event TW4-14
pH Buffer 7.0 7.0	H Buffer 4.0
Specific Conductance 499 µMHOS/ cm	Well Depth(0.01ft): 96.00
Depth to Water Before Purging 80.89 Casing	Volume (V) 4" Well: 9.86 (.653h) (.367h)
	5 Well (1567h)
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 12.17 Gal. Purged 11	Time Gal. Purged
Conductance 5297 pH 6.41	Conductance pH
Temp. °C 13.95	Temp. °C
Redox Potential Eh (mV) 330	Redox Potential Eh (mV)
Turbidity (NTU) 72	Turbidity (NTU)
Time 0741 Gal. Purged 0	Time 0743 Gal. Purged
Conductance 5074 pH 6.66	Conductance <u>510</u> Ч рН <u>6.56</u>
Temp. °C 12.70	Temp. °C 12-47
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	After

Volume of Water Purged	[1]		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. $S/60 = 11.0$ Time to evacuate two casing volumes (2V) $T = 2V/Q = 1.79$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness	, number	of gallons	evacuated	11				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWA	L			
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	囟		3x40 ml		[29	HCL	X	
utrients	Ž		100 ml		7	H2SO4	ď	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	内		Sample volume		14		0	Ø
Chloride If preservative is used, specify Type and Quantity of Preservative:								
nal Depth 94.31 Sample Time 0742								
omment						Index.1	instructio	
Accived on the at 121	13 14	nner 1	(Grani 1	5		0 '	1	
Arrived on site at 1213. Tanner and Garrin present for purge. Purge began at 1216 Purged well for a total of 1 minute. Purged well dry. Purge ended at 1217.								
water was murky. Left site at 1219 Arrived on site at 0738 Tanner and Garrin present to collect samples. Depth to Water was								
1.17 samples were bailed at 0742 Left site at 0744								

TW4-27 01-22-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL IELD DATA WORKSHEET FOR GROUNDWATER

1	
.0	See instruction

FIELD DATA WORKSHEET FOR GROUNDWATER							
Description of Sampling Event: 1st Quarter Chloroform 2014							
Sampler Name							
Location (well name): TW4-28 and initials: Tanner Holliday HH							
Field Sample ID 7W4-28_01222014							
Date and Time for Purging 1/21/2014 and Sampling (if different) 1/22/2014							
Well Purging Equip Used: Dump or Dump bailer Well Pump (if other than Bennet)							
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event TW4-12							
pH Buffer 7.0 7.0 pH Buffer 4.0 나, 0							
Specific Conductance 999 µMHOS/ cm Well Depth(0.01ft): 107.00							
Depth to Water Before Purging 37.35 Casing Volume (V) 4" Well: 45.48 (.653h) 3" Well: 0 (.367h)							
Weather Cond. Sund							
Time 1233 Gal. Purged 66 Time 1232 Gal. Purged 77							
Conductance 1144 pH 7.11 Conductance 1144 pH 7.12							
Temp. °C 14.67							
Redox Potential Eh (mV) Z50 Redox Potential Eh (mV) Z35							
Turbidity (NTU) 59 Turbidity (NTU) 59							
Time 1233 Gal. Purged 88 Time 1239 Gal. Purged 99							
Conductance 1147 pH 7.17 Conductance 1140 pH 7.11							
Temp. °C [14.73] Temp. °C [14.69]							
Redox Potential Eh (mV) Z33 Redox Potential Eh (mV) Z33							
Turbidity (NTU) Turbidity (NTU) G1							

Volume of Water Purged [99] gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) $T = 2V/Q = 8.2.6$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness,	If well evacuated to dryness, number of gallons evacuated							
Name of Certified Analytica	l Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample		e Taken	Sample Vol (indicate if other than as	Filtered		Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
/OCs	Ŋ		3x40 ml		Þ	HCL	囟	
Nutrients	Ď		100 ml		Z)	H2SO4	N	
leavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)			Sample volume		EZ)			2
Chloride						If preservative is used	d, specify	
						Type and Quantity of	Preservat	tive:
Final Depth 103.11		Sample Ti	ime 1008	Î				
Comment	See instruction							
	_		, <u>, , , , , , , , , , , , , , , , , , </u>	2		2		
Arrived on site at 122	2 -	Tanner as	nd Garrin present	tor b	ride.	Purge began at	1225	
Purged well for a total	of	9 minut	Tes. Purge ended	at 12	234. 1	water was a	little m	rurky.
1 St site at 1736								
Arrived on site at 1005	s Tann	ier and i	Garrin present to c	collect.	Sample:	s. Depth to wat	ter was	5 37,19
samples bailed at 1008 Left site at 1011								

TW4-28 01-21-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2

NIUM MILL OR GROUNDWATER
hloroform 2014
Sampler Name and initials: Tanner Holliday/TH
Sampling (if different) Z/5/2014
Tell Pump (if other than Bennet) Grundfos
Vell Sampled in Sampling Event TW4-29R
Buffer 4.0 4.0
Well Depth(0.01ft): 93.50
Volume (V) 4" Well: 74.20 (.653h)
3" Well: 6 (.367h)
Ext'l Amb. Temp. °C (prior sampling event) - b
Time Gal. Purged
Conductance pH
Conductance pH
Conductance pH Temp. °C
Conductance pH Temp. °C Redox Potential Eh (mV)
Conductance pH Temp. °C Redox Potential Eh (mV) Turbidity (NTU)
Conductance pH Temp. °C Redox Potential Eh (mV) Turbidity (NTU) Time O842 Gal. Purged
Conductance pH Temp. °C Redox Potential Eh (mV) Turbidity (NTU) Time O842 Gal. Purged Conductance 4124 pH 6.42
Conductance pH Temp. °C Redox Potential Eh (mV) Turbidity (NTU) Time O842 Gal. Purged O Conductance 4124 pH 6.42 Temp. °C 11.94

Volume of Water Purged	19		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11.0			Time to evac $T = 2V/Q =$			volumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	1.33				
If well evacuated to dryness	, number	of gallons	s evacuated	19				
Name of Certified Analytica	al Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	[2]		3x40 ml		Ø	HCL	[7]	
utrients	A		100 ml		×	H2SO4	ď	
eavy Metals			250 ml			HNO3		
Il Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	<u>[74</u>		Sample volume		59			Ø
Chloride						If preservative is used Type and Quantity of	-	ive:
nal Depth 91.14		Sample T	Time 0842	Į,				
omment						h (GZ)	instructio	
Arrived on site at 12	.09 7	anner A	and Garrin Ares	+ 1.	- 611	Ar Pura	+	-1213
Purged well for a - Natur was mostly of 1837. Garrin presen	total e	£ 1,	ninute and 45	Secon	ds. 1	Purged well dry	gan ar	740
water was mostly of	ear. P	urge en	ided at 1215, Left	site	at 12	17. Arrived	on si	te at
3837. Garrin presen	t for	sampl	ing. Depth to	wate	r bef	fore Sampling	was	72.02.
Samples were collect	ted o	L+ 08	142. Left site	at o	347.			

TW4-29 02-04-2014

Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUNDWATER

5	See	instruction
100		

Description of Sampling Event: IST Quarter Chloroform
Sampler Name
Location (well name): TW4-Z9R and initials: Tonner Holliday 1771
Field Sample ID TWY-29 R_02042014
Date and Time for Purging 2/4/2014 and Sampling (if different)
Well Purging Equip Used: Dump or Dumb bailer Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings
Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event TW4-2]
pH Buffer 7.0 7.8 pH Buffer 4.0 4.8
Specific Conductance 499 µMHOS/ cm Well Depth(0.01ft):
Depth to Water Before Purging O Casing Volume (V) 4" Well: O (.653h) 3" Well: O (.367h)
Weather Cond. Snowing Ext'l Amb. Temp. °C (prior sampling event) -Z°
Time Gal. Purged 143 Time Gal. Purged
1110 Conductance 5.9 pH 7.18 Conductance pH
Temp. °C
Redox Potential Eh (mV) Redox Potential Eh (mV)
Turbidity (NTU) Turbidity (NTU)
Fime Gal. Purged Time Gal. Purged
Conductance pH Conductance pH
Temp. °C
Redox Potential Eh (mV) Redox Potential Eh (mV)
Turbidity (NTU) Turbidity (NTU)

Volume of Water Purged	150).	gallon(s)						
Pumping Rate Calculation			1 Banenia)						
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) $T = 2V/Q = 0$									
Number of casing volumes evacuated (if other than two)									
If well evacuated to dryness	, number	of gallons	s evacuated	D					
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL					
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserva	ative Added	
	Y	N	specified below)	Y	N		Y	N	
OCs	N.		3x40 ml		M	HCL	M		
lutrients	K		100 ml		1	H2SO4	色		
leavy Metals			250 ml			HNO3			
Il Other Non Radiologics			250 ml			No Preserv.			
ross Alpha			1,000 ml			HNO3			
Other (specify)	1521		Sample volume		161			Ø	
If preservative is used, specify Type and Quantity of Preservative:									
Sample Time 1111 See instruction									
Arrived on site at 1057. Tanner and Garrin present for Rinsate, Rinsate began at 1058. Pumped 50 Gallons soap water and 100 Gallons of D.I. water. Rinsate ended and samples collected at 1111. Left site at 1113									

TW4-29R 02-04-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL D DATA WORKSHEET FOR GROUNDWATER

1	See	instruction

FIELD DATA WORKSHEET FOR GROUNDWATER				
Description of Sampling Event: 15T Quarter Chlorote	rm 2014			
	Sampler Name			
Location (well name): TW4-30	and initials: Tanner Holliday TH			
Field Sample ID TWY-30_012326H				
Date and Time for Purging 1/22/2014 and	Sampling (if different) \/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
Well Purging Equip Used: Dpump or D bailer W	Vell Pump (if other than Bennet)			
Purging Method Used: 2 casings 3 casings				
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event TW4-27			
pH Buffer 7.0 7.0	I Buffer 4.0 4,0			
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 92.50			
Depth to Water Before Purging 77.16 Casing	Volume (V) 4" Well: 10.01 (.653h) (.367h)			
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) Ц			
Time 12.43 Gal. Purged 14.50	Time Gal. Purged			
Conductance 4343 pH 5.08	Conductance pH			
Temp. °C [14.70	Temp. °C			
Redox Potential Eh (mV) 356	Redox Potential Eh (mV)			
Turbidity (NTU)	Turbidity (NTU)			
Time 6744 Gal. Purged 6	Time 0751 Gal. Purged 0			
Conductance 4470 pH 5,36	Conductance 4317 pH 5.26			
Temp. °C 11.66	Temp. °C			
Redox Potential Eh (mV)	Redox Potential Eh (mV)			
Turbidity (NTU)	Turbidity (NTU)			
Before	After			

Volume of Water Purged	14,50		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) $T = 2V/Q = 1.82$								
Number of casing volumes e	Number of casing volumes evacuated (if other than two)							
If well evacuated to dryness	, number	of gallons	evacuated	14.50				
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWA	L			
Type of Sample	Sampl	le Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N_		Y	N
OCs	1		3x40 ml		P	HCL	[B]	
utrients	凹		100 ml		M	H2SO4	ď	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	恒		Sample volume		10			屆
Chloride If preservative is used, specify								
Type and Quantity of Preservative:								
nal Depth 90.41 Sample Time 0750								
See instruction								
omment				2 0150	a P	, 1	1242	
Arrived on site at 1240	JAN	ner and	Garrin present to	c bank	· luc	ge began at	1010	
Puraed well for a total	al of	1 min	Ate ZO Seconds	Picael	d well	dru! Pura	anded a	+
Purged well for a tot. 1243. Water was a 1	little 1	nurky.	Left site at	1245.		7	7.000	
Arrived on site at 074	6 Tann	er and (Garrin present to	collect.	sample	s. Depth to water	er was	77,26
pamples bailed at 0750 Left site at 0752								

TW4-30 01-22-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2

WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUNDWATER	
Description of Sampling Event: 1ST Quarter Chloroform 2014	
Location (well name): TW4-31 Sampler Name and initials: Tanner Holliday III	
Field Sample ID TWU-31_01232014	
Date and Time for Purging 1/22/2014 and Sampling (if different) 1/23/2014	
Well Purging Equip Used: pump or bailer Well Pump (if other than Bennet)	
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarter & Chloroform Prev. Well Sampled in Sampling Event TW4-30	
pH Buffer 7.0 pH Buffer 4.0 4.0	
Specific Conductance 499 µMHOS/ cm Well Depth(0.01ft): 106.00	
Depth to Water Before Purging 22.86 Casing Volume (V) 4" Well: 15.11 (.653h) 3" Well: 0 (.367h)	
Weather Cond. Party Cloudy Ext'l Amb. Temp. °C (prior sampling event) 5°	
Time 1317. Gal. Purged 8 Time Gal. Purged	
Conductance 4882 pH 6.58 Conductance pH	

Temp. °C 14.30
Redox Potential Eh (mV) 323
Turbidity (NTU) 75
Time 0756 Gal. Purged 0
Conductance 4931 pH 5.93
Temp. °C 12.47
Redox Potential Eh (mV)
Turbidity (NTU)
Before

Conductance pH
Temp. °C
Redox Potential Eh (mV)
Turbidity (NTU)
Time 07.58 Gal. Purged 0
Conductance 4974 pH 6.08
Temp. °C 12.19
Redox Potential Eh (mV)
Turbidity (NTU)
After

Volume of Water Purged	18		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11.0 Time to evacuate two casing volumes (2V) $T = 2V/Q = 2.74$								
Number of casing volumes	Number of casing volumes evacuated (if other than two)							
If well evacuated to dryness	, number	of gallons	s evacuated	18				
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	X		3x40 ml		<u>F2</u> 8	HCL	Œ	
utrients	X		100 ml		Ď	H2SO4	Ž	
eavy Metals			250 ml			HNO3		
II Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	Ď	D	Sample volume		凶			Ø
Chloride If preservative is used, specify Type and Quantity of Preservative:								
nal Depth 104.06 Sample Time 0756 See instruction								
Arrived on site at 1309 Tanner and Garrin present for purge. Purge began at 1311 Purged well for a total of 1 minute 40 seconds. Purged well dry, water was murky Purge ended at 1312. Left site at +3+1-1315. Arrived on site at 0753, Tanner and Garrin present to collect samples. Depth to water was 82.98 Samples bailed at 0756 Left site at 0759								

TW4-31 01-22-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL IELD DATA WORKSHEET FOR GROUNDWATER

1	See instruction

FIELD DATA WORKSHEET FO	OR GROUNDWATER				
Description of Sampling Event: 1st Quarter Chloro	form 2014				
Location (well name): TW4-3Z	Sampler Name and initials: Tanner Holliday HH				
Field Sample ID TW4-32_01222014					
Date and Time for Purging 1/21/2014 and	Sampling (if different) 1/22/2014				
Well Purging Equip Used: Dump or D bailer W	Tell Pump (if other than Bennet)				
Purging Method Used: 2 casings 3 casings					
Sampling Event Quarterly Chlorotorm Prev. W	Vell Sampled in Sampling Event				
pH Buffer 7.0 pH	Buffer 4.0 4.0				
Specific Conductance 499 µMHOS/ cm	Well Depth(0.01ft): 15.10				
Depth to Water Before Purging 48.90 Casing Volume (V) 4" Well: 43.22 (.653h) 3" Well: 6 (.367h)					
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)				
Time 306 Gal. Purged 55	Time 1307 Gal. Purged 66				
Conductance 7069 pH 3.52	Conductance 7155 pH 3.50				
Temp. °C 14.68	Тетр. °С 14.69				
Redox Potential Eh (mV)	Redox Potential Eh (mV) 450				
Turbidity (NTU)	Turbidity (NTU) 25				
Time 1368 Gal. Purged 77	Time 1304 Gal. Purged 88				
Conductance 716Z pH 3.48	Conductance 7206 pH 3.47				
Temp. °C 19.69	Тетр. °С <u>\\Ч.6</u>				
Redox Potential Eh (mV) 462	Redox Potential Eh (mV)				
Turbidity (NTU)	Turbidity (NTU)				

Volume of Water Purged	88		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) $T = 2V/Q = \boxed{7.85}$								
Number of casing volumes	evacuate	d (if other	than two)	0				
If well evacuated to dryness	s, number	of gallons	sevacuated	0				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample		e Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	囟		3x40 ml			HCL	M	
utrients	120		100 ml		K	H2SO4	D29	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologies			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	179		Sample volume		53			À
If preservative is used, specify Type and Quantity of Preservative: nal Depth 77, 10 Sample Time 1015								
omment See instruction								
Arrived on site at 1258 Tanner and Garrin present for purge. Purge began at 1301								
Surged well for a total of 8 minutes. Purge ended at 1309, water was mostly clear								
A site at 1311								
rrived on site at 1012	Tann	er and	Garrin present to	collect	Samp	les. Depth to	water	Was
48.54 Samples ba	iled and	collect	ted at 1015	Left	site a	t 1017		

Do not touch this cell (SheetName)

TW4-32 01-21-2014

ATTACHMENT 1-2 WHITE MESA URANIUM MILL

1	See	instruction
-	000	

FIELD DATA WORKSHEET F	
Description of Sampling Event: 1st Quarter Chloro	
I - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	Sampler Name
Location (well name): TW4-33	and initials: Tanner Holliday MH
Field Sample ID TW4-33_01302014	
Date and Time for Purging 1/29/2014 and	Sampling (if different) 1/30/2014
Well Purging Equip Used: Dump or D bailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. 1	Well Sampled in Sampling Event TW4-18
pH Buffer 7.0 PF	H Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 87.90
Depth to Water Before Purging 70.50 Casing	Volume (V) 4" Well: 11.36 (.653h) 3" Well: 0 (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 5°
Time 1040 Gal. Purged 14.50	Time Gal. Purged
Conductance 9.1 pH 6.81	Conductance pH
Temp. °C 14.50	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 6750 Gal. Purged	Time 0751 Gal. Purged 6
Conductance 46.76 pH 6.76	Conductance 4674 pH 6.77
Temp. °C 12.18	Temp. °C 12.1∂
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	After

Volume of Water Purged	14.	50	gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11.0	1		Time to evac $T = 2V/Q =$		casing v	olumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	1,27				
If well evacuated to dryness	, number	of gallons	s evacuated	14.50				
Name of Certified Analytica	ıl Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
OCs	Z X		3x40 ml		(%)	HCL	X	
utrients	N		100 ml		內	H2SO4	(X)	
eavy Metals			250 ml			HNO3		
Il Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	[3]		Sample volume		ĈĐ.			5
Chloride						If preservative is use	d, specify	
						Type and Quantity of		tive:
						-		
nal Depth 85.13		Sample T	ime 07.50					
ammant						See	instructio	on
omment	27 .	7		T 0-		2	1.	
Arrived on site at 10	37	lanner	and Garrin presen	101	bride	. Turge began	at 10	39
Purged well for a to	tal of	1 minu	te zo seconds. P	urged u	sell dr	y! water was	mostly	g clear.
Purge ended at 1040.	. Lett	r SHE	at 1043. Arrive	id on	site	, at 0741, c	Garrin	present
to collect Samples.	Dept	h to	water was 7	0.26.	Sam	ples were	bailed	l at
0750. Left site or	757.							

TW4-33 01-29-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL DATA WORKSHEET FOR CROUNDWATE

FIELD DATA WORKSHEET	FOR GROUNDWATER
Description of Sampling Event: 15T Quarter Chlorofo	4102 mag
	Sampler Name
Location (well name): TW4-34	and initials: Tanner Holliday/TH
Field Sample ID TW4-34_01232014	
Date and Time for Purging 1/22/2014 and	d Sampling (if different) V23/2014
Well Purging Equip Used: Dump or Dailer	Well Pump (if other than Bennet)
Purging Method Used: 2 casings 2 casings	
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event TW4-31
pH Buffer 7.0 7.0	H Buffer 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 97.20
Depth to Water Before Purging 69.54 Casing	g Volume (V) 4" Well: 18.06 (.653h) (.367h)
	(.30711)
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 6°
Time [134] Gal. Purged [27.50]	Time Gal. Purged
Conductance 3925 pH 7.00	Conductance pH
Temp. °C 14.74	Temp. °C
Redox Potential Eh (mV) 261	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0805 Gal. Purged 0	Time O804 Gal. Purged σ
Conductance 3928 pH 6.48	Conductance 3985 pH 6,46
Temp. °C 12.11	Temp. °C 12.03
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	After

Volume of Water Purged	27.5	50	gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11.0]		Time to evac $T = 2V/Q =$			olumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	1.52				
If well evacuated to dryness	, number	of gallons	s evacuated	27.50				
Name of Certified Analytica	al Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample		e Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	暂		3x40 ml			HCL	Ď	
Nutrients	E		100 ml		Į l	H2SO4	No.	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	K		Sample volume		卢			ď
Chloride						If preservative is used Type and Quantity of	_	tive:
Final Depth 95.25	İ	Sample T	ime 0805					
Comment						See See		
Acrived on site at 133	7 T	anner an	d Garrin present	for p	urge.	Purae begar	1 at	1339
Arrived on site at 133 Purged well for a tot	al of	Z mi	inutes and 30 s	econd	5, Pu	rged well dry		
Purge onded at 134 Arrived on site at 0801. T Samples bailed at 080	anner and	ter was d Garrin	s murky. Lett s present to collect s	site at	134	3		
2017102 -011011								

TW4-34 01-22-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL I D DATA WORKSHEET FOR GROUNDWATER

19	See	instruction
----	-----	-------------

Description of Sampling Event: 157	FIELD DATA WORKSHEET FOR GROUNDWATER							
Depth to Water Before Purging Depth to Water Before Purging Depth to Water Before Purging Depth to Water Before Purging Depth to Water Before Purging Depth to Water Conductance O. 9	Description of Sampling Event: 15T Quarter Chlor	oform 2014						
Field Sample ID TW4-60_02062014 Date and Time for Purging 2/6/2014 and Sampling (if different) Well Purging Equip Used: Dump or Deailer Well Pump (if other than Bennet) Frey Well Sampled in Sampling Event Prey Well Sampled in Sampling Event Prey Well Sampled in Sampling Event PH Buffer 7.0 7.0 PH Buffer 4.0 Quently A" Well: Generating Office (653h) Weather Conductance 944 Gal. Purged Conductance O-9 pH 7.39 Time Gal. Purged Conductance PH Temp. C Time Gal. Purged Conductance PH Time Gal. Purged Time Gal. Purged Conductance PH Temp. C Time Gal. Purged Conductance pH Time Gal. Purged Time Gal. Purged Time Gal. Purged Time Gal. Purged Conductance pH Temp. C Temp. C Redox Potential Eh (mV)								
Date and Time for Purging 2/6/2014 and Sampling (if different) Well Purging Equip Used: Depump or bailer Well Pump (if other than Bennet) Purging Method Used: 2 casings Sampling Event Chloraform Prev. Well Sampled in Sampling Event PH Buffer 7.0 7.0 pH Buffer 4.0 4.0 Specific Conductance 999 µMHOS/cm Well Depth(0.01ft): O Depth to Water Before Purging O Casing Volume (V) 4" Well: O (.653h) 3" Well: O (.653h) 3" Well: O Conductance O.9 pH Time Gal. Purged O Temp. °C (prior sampling event) Temp. °C Redox Potential Eh (mV) Turbidity (NTU) Time Gal. Purged Time Gal. Purged Time Gal. Purged Conductance pH Time Gal. Purged Conductance pH Turbidity (NTU) Time Gal. Purged Conductance pH Time Gal. Purged Conductance pH Temp. °C Redox Potential Eh (mV) Temp. °C Redox Potential Eh (mV) Redox Potential Eh (mV)	Location (well name): Tw4-60	and initials: Tanner Holliday/TH						
Well Purging Equip Used: Dump or bailer Well Pump (if other than Bennet) Purging Method Used: 2 casings 3 casings Sampling Event Quarterly Chloro Form Prev. Well Sampled in Sampling Event Prov. Well Sampled in Sampled in Sampling Event Prov. Well Sampled i	Field Sample ID							
Purging Method Used: 2 casings 3 casings Sampling Event Avaluation Prev. Well Sampled in Sampling Event Prev. Well Sampled in Sampled	Date and Time for Purging 2/6/2014 and	Sampling (if different)						
Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event PH Buffer 7.0 7.0 pH Buffer 4.0 4.0 Specific Conductance 949 µMHOS/cm Well Depth(0.01ft): Casing Volume (V) 4" Well: 0 (.653h) 3" Well: 0 (.367h) Weather Cond. Clear Ext'l Amb. Temp. °C (prior sampling event) 20° Time 0844 Gal. Purged 0 Conductance pH Conductance PH Conductance PH Conductance PH Conductance pH Turbidity (NTU) 0.1 Turbidity (NTU) 0.1 Time Gal. Purged Conductance pH Conductance pH Conductance pH Conductance PH Co	Well Purging Equip Used: pump or bailer W	Vell Pump (if other than Bennet)						
Prev. Well Sampled in Sampling Event pH Buffer 7.0 7.0 pH Buffer 4.0 4.0 Specific Conductance 999	Purging Method Used: 2 casings 3 casings							
Specific Conductance 949 µMHOS/ cm Well Depth(0.01ft): Ø Depth to Water Before Purging Ø Casing Volume (V) 4" Well: Ø (.653h) 3" Well: Ø (.367h) Weather Cond. Clear Ext'l Amb. Temp. °C (prior sampling event)	Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event						
Depth to Water Before Purging Casing Volume (V) 4" Well: 0 (.653h) (.367h) Weather Cond. Ext'l Amb. Temp. °C (prior sampling event) 2.0° Time 0844 Gal. Purged Description Conductance 0.9 ph 7.39 Conductance ph Temp. °C 13.13 Redox Potential Eh (mV) Redox Potential Eh (mV) Turbidity (NTU) Turbidity (NTU) Time Gal. Purged Conductance ph Time Gal. Purged Conductance ph Temp. °C Redox Potential Eh (mV) Redox Potential E	pH Buffer 7.0 7.8	H Buffer 4.0						
Si Well: O (.367h)	Specific Conductance 919 µMHOS/ cm	Well Depth(0.01ft):						
Time	Depth to Water Before Purging Casing							
Conductance O.9 pH 7.39 Temp. °C T3.13 Redox Potential Eh (mV) Z35 Turbidity (NTU) Time Gal. Purged Time Gal. Purged Conductance pH Temp. °C Temp. °C Redox Potential Eh (mV) Time Gal. Purged Time Gal. Purged Conductance pH Temp. °C Redox Potential Eh (mV) Temp. °C Redox Potential Eh (mV) Redox Potential Eh (mV)	Weather Cond. Clear	Ext'l Amb. Temp. °C (prior sampling event) 20°						
Temp. °C Redox Potential Eh (mV) Turbidity (NTU) Time Gal. Purged Conductance pH Conductance pH Temp. °C Redox Potential Eh (mV) Time Gal. Purged Conductance pH Temp. °C Redox Potential Eh (mV) Time Redox Potential Eh (mV) Time Redox Potential Eh (mV)	Time 0844 Gal. Purged 8	Time Gal. Purged						
Redox Potential Eh (mV) Turbidity (NTU) Time Gal. Purged Conductance pH Temp. °C Redox Potential Eh (mV) Time Gal. Purged Conductance pH Temp. °C Redox Potential Eh (mV) Redox Potential Eh (mV) Redox Potential Eh (mV)	Conductance 0.9 pH 7.39	Conductance pH						
Turbidity (NTU) Time Gal. Purged Time Gal. Purged Conductance pH Temp. °C Temp. °C Temp. °C Redox Potential Eh (mV) Turbidity (NTU) Time Gal. Purged Time Gal. Purged Conductance pH Redox Potential Eh (mV)	Temp. °C [3,13]	Temp. °C						
Time Gal. Purged Conductance pH Conductance pH Temp. °C Temp. °C Redox Potential Eh (mV) Redox Potential Eh (mV)	Redox Potential Eh (mV) 235	Redox Potential Eh (mV)						
Conductance pH Conductance pH Temp. °C Temp. °C Redox Potential Eh (mV) Redox Potential Eh (mV)	Turbidity (NTU)	Turbidity (NTU)						
Temp. °C Temp. °C Redox Potential Eh (mV) Redox Potential Eh (mV)	Time Gal. Purged	Time Gal. Purged						
Redox Potential Eh (mV) Redox Potential Eh (mV)	Conductance pH	Conductance pH						
	Temp. °C	Temp. °C						
Turbidity (NTU) Turbidity (NTU)	Redox Potential Eh (mV)	Redox Potential Eh (mV)						
	Turbidity (NTU)	Turbidity (NTU)						

Volume of Water Purged	D		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. $S/60 = \bigcirc$	l		Time to evac $T = 2V/Q = 1$		casing v	olumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	s evacuated	0				
Name of Certified Analytica	al Labora	tory if Oth	ner Than Energy Labs	AWA	L			
Type of Sample	I Sample Laken I -		Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
OCs	D		3x40 ml		N	HCL	X	
utrients	029		100 ml		Ď	H2SO4	29	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	[2]		Sample volume		Ċ			Z
Chloride If preservative is used, specify Type and Quantity of Preservative:								ve:
nal Depth 0		Sample T	ime 0 % 45			See See	instructio	n
D.I.	5	slan	K					
TW4-60 02-06-2014	4 Do	not touch	this cell (SheetName)					

ATTACHMENT 1-2 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUNDWATER

19	See instruction
Secretary .	

FIELD DATA WORKSHEET FO	
Description of Sampling Event: 15T Quarter C	Sampler Name
Location (well name): TW4-65	and initials: Tanner Holliday TH
Field Sample ID TW4-65_01222014	
Date and Time for Purging	Sampling (if different) 1/22/2014
Well Purging Equip Used: Dump or Dump bailer	Tell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event TW4-1Z
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 107.00
Depth to Water Before Purging 37 35 Casing	Volume (V) 4" Well: 45.48 (.653h) 3" Well: 0 (.367h)
	J Well. (John)
Weather Cond. Sundy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1233 Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged	99		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11.0			Time to evac $T = 2V/Q =$			volumes (2V)		
Number of casing volumes If well evacuated to drynes	ss, number	of gallon	s evacuated	0				
Name of Certified Analytic	cal Labora	tory if Otl	ner Than Energy Labs	AWA	<u></u>			
Type of Sample		e Taken	Sample Vol (indicate if other than as	Filte		Preservative Type	7 .	tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs .	<u>N</u>		3x40 ml		N	HCL	52	
Vutrients	DX)		100 ml		P	H2SO4	Ď	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		70 50
Other (specify)	図		Sample volume		79		0	Ø
Chloride Final Depth 103.11		Sample T	ime 1006			If preservative is used Type and Quantity of		ve:
Comment						See :	instruction	1
Duplica			TW4-2	28				

ATTACHMENT 1-2 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUNDWATER

dy	See	instruction

FIELD DATA WORKSHEET FOR GROUNDWATER							
Description of Sampling Event: 1st Quarter Chlo							
Location (well name): TWY-70	Sampler Name and initials: Tanner Holliday/TH						
Field Sample ID TW4-70_01292014							
Date and Time for Purging 1/29/2014 and	Sampling (if different)						
Well Purging Equip Used: Dump or D bailer	Yell Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event						
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0						
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						
Depth to Water Before Purging 74.48 Casing	Volume (V) 4" Well: 37.88 (.653h) 3" Well: 0 (.367h)						
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

Volume of Water Purged	78	.12	gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = . Z 17	Î		Time to evac $T = 2V/Q =$			olumes (2V)		
Number of casing volumes	evacuate	d (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	sevacuated	0				
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWA	L			
Type of Sample	Sampl	le Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
VOCs	10		3x40 ml		1	HCL	M	
Nutrients	忆		100 ml		团	H2SO4		
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	阳		Sample volume		16			ď
Chloride						If preservative is used Type and Quantity of	_	ive:
Final Depth 80.30		Sample T	ime 1305			See	instructio	n
	te	70	? MW-32					
TW4-70 01-29-2014	Do	not touch t	his cell (SheetName)					

Tab C
Weekly and Monthly Depth to Water Data

			2	System Operational (If no note
<u>Time</u>	Well	Depth*	Comments	any problems/corrective actions)
1433	MW-4	68.51	Flow 4.4 6PM	Yes No
			Meter 277683.01	Yes No
1429	MW-26	68.95	Flow 10.16PM	(Yes) No
			Meter 3878935.52	Yes No
1505	TW4-19	72.85	Flow . 14.0 GPM	(Yes) No
			Meter 2001771-00	Yes No
1425	TW4-20	65,20	Flow 9.5 GRM	Yes No
			Meter 612125.22	Yes No
1436	TW4-4	69.80	Flow 8.0 GPM	Yes No
			Meter 251904.40	Yes No
1414	TWN-2	26.00	Flow 18.5 GPM	Yes No
			Meter 183040.60	Yes No
1421	TW4-22	64.18	Flow 18.0 GPM	Yes No
			Meter 94464.60	(Yes) No
1418	TW4-24	68-48	Flow 18.0 GPM	(Yes) No
			Meter 877063.20	Yes No
1410	TW4-25	59.55	Flow 17.8 GPM	(Yes) No
			Meter 527939.70	Yes No

Operational Problems (Please list well humber).	
Corrective Action(s) Taken (Please list well number):	

^{*} Depth is measured to the nearest 0.01 feet.

Monthly Depth Check Form

Date	19/2014		Name	Garrin Pala	ner, clayfor 1
Time	<u>Well</u>	Depth*	Time	Well	Depth*
10:22	MW-4	69.94	04.58	TWN-1	57.6el
10:20	TW4-1	64.97	10.05	TWN-2	29.40
10:24	TW4-2	65.85	09:50	TWN-3	36.40
10:17	TW4-3	52.41	09:45	TWN-4	49.76
0:25	TW4-4	68.94	04.55	TWN-7	86.77
10.14	TW4-5	60.70	09:40	TWN-18	58.89
10:37	TW4-6	69.24	13:47	MW-27	52.69
0.21	TW4-7	65.59	1342	MW-30	76.40
10:19	TW4-8	65.17	10:42	MW-31	67.55
10.15	TW4-9	58.40	13:21	TW4-28	37.00
11.0	TW4-10	58,50	13:29	TW4-29	71.84
10:26	TW4-11	6 8.40	13.33	TW4-30	[1. F.f.
3:20	TW4-12	42:40	13.34	TW4-31	82.90
13.25	TW4-13	47.15	13.23	TW4-32	4841
13:20	TW4-14	84.48	13.36	TW4-33	70.35
0.09	TW4-15	65.10	13:31	TW4-34	69.49
0.28	TW4-16	62.43			
10:31	TW4-17	74.30			
10:00	TW4-18	61.50			
1406	TW4-19	69.54			
10.08	TW4-20	77.95			
10.03	TW4-21	61.86			
FO:03	TW4-22	58.67			
10:33	TW4-23	64.85			
F00	TW4-24	66.28			
0:05	TW4-25	59.96			
0.38	TW4-26	63.10			
13.28	TW4-27	80.86			
Comme	ents: (Please	note the well	number fo	or any comi	ments)

^{*} Depth is measured to the nearest 0.01 feet

Date	1/13/14	Name Farrin Palmer, Tonner Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1043	MW-4	68.75	Flow 4.4 Gen	(Yes) No
			Meter 292822.23	Yes No
1039	MW-26	88.35	Flow 10.2 GPM	Yes) No
			Meter 389197.98	Yes No
1151	TW4-19	72.40	Flow 14.0 cfm	(Yes) No
OP .			Meter 2032649.30	Yes No
1034	TW4-20	67.00	Flow 9.8 6PM	(Yes) No
			Meter 613681.37	(Yes) No
10-16	TW4-4	70-10	Flow 8.2 GPM	(Yes) No
			Meter 256451.10	Yes No
1027	TWN-2	28.60	Flow 18.0 GPM	(Yes) No
			Meter 187682.45	(Yes No
1034	TW4-22	59.62	Flow 17.8 6PM	(Yes) No
			Meter 96238.40	Yes No
1031	TW4-24	81.73	Flow 18.1 GAM	(Yes) No
			Meter 897313,40	Yes No
1023	TW4-25	60.90	Flow 17.9 GPM	(Yes) No
			Meter 538109.70	(Yes) No

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	

^{*} Depth is measured to the nearest 0.01 feet.

Date 1/20/14

Name Garrin Palmer, Tanner Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1220	MW-4	71.70	Flow 4.4 GPM	Yes No
			Meter 288524.28	Yes No
1715	MW-26	65.91	Flow 10-0 GPM	Yes No
			Meter 391512.76	(Yes) No
1310	TW4-19	58.96	Flow 14.0 GPM	Yes No
			Meter 2044776.00	(Yes) No
	TW4-20	64.39	Flow 9.7 GPM	Yes No
			Meter 615170.33	Yes No
1225	TW4-4	70.10	Flow 80 GFM	Yes No
			Meter 261272.90	Yes No
1201	TWN-2	26.52	Flow 18.0 GPM	(Yes) No
			Meter 191412,40	(Yes) No
1208	TW4-22	59.63	Flow 18.0 6PM	(Yes) No
		V.	Meter 98289.70	(Yes) No
1210	TW4-24	68.05	Flow 18.1 GPM	Yes No
			Meter 916317.90	Yes No
1157	TW4-25	59.20	Flow 18.2 GPM	Yes No
			Meter 548471.70	Yes No

Operational Problems (Please list well number):	Power to Tw4-19 is off because maintenance		
is replacing coverts. Power will be turned	- back on before work day is over , Not able		
to get flow reading, will check when ,			
Corrective Action(s) Taken (Please list well number):	Power was back on a 1500, completed		

^{*} Depth is measured to the nearest 0.01 feet.

Date	1/27/14		Name Garria Palmer	Tonost Halliday
Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1425	MW-4	68.35	Flour	(e) No
1459		08.23	Meter 294005.54	(PS) No
1420	MW-26	68.65	Flow 10.8 com	No No
			Meter 393278.89	(e) No
1310	TW4-19	68.74	Flow 14.00	(Yes) No
			Meter 2068045.00	Yes No
1412	TW4-20	64.60	Flow 10.2 6PM	(Yes) No
			Meter 616643.78	ੴ® No
1433	TW4-4	69.99	Flow 7.6 GPM	Yes No
			Meter 265925-11	Yes No
1349	TWN-2	29.15	Flow 17.8 6PM	(Yes) No
			Meter 145205.30	Yes No
1402	TW4-22	80.50	Flow IS.D GPM	(Yes) No
			Meter 100125.40	(Yes) No
1355	TW4-24	64.11	Flow 18.3 6PM	(Yes) No
			Meter 935127.00	(Yes) No
1338	TW4-25	59.89	Flow 17.9 6PM	(Yes) No
			Meter 558872.60	(es) No
Operatio	nal Problems (Please list we	Il number):	
	4 11 11 -	(5)		
Correctiv	e Action(s) Ta	ken (Please lis	st well number):	

^{*} Depth is measured to the nearest 0.01 feet.

Date	2/3/2014	
------	----------	--

Name Garrin Palmer

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1454	MW-4	74.82	Flow 4.4 GPM	(Yes) No
			Meter 299510.93	Yes No
1451	MW-26	66.40	Flow 100 cpm	(Yes) No
			Meter 395616.58	Yes No
1420	TW4-19	68.74	Flow 14.00 GPM	Yes) No
			Meter 2095437.00	₹es No
1448	TW4-20	64.25	Flow 100 GPM	Yes No
			Meter 618183-14	Yes No
1458	TW4-4	70.10	Flow 8.0 GRM	Yes No
			Meter 270690.70	(Yes) No
1436	TWN-2	26.02	Flow 18.1 GPM	(Yes) No
			Meter 19909450	Yes No
1445	TW4-22	59.68	Flow 18.4 GPM	Yes No
			Meter 102164.70	Yes No
1441	TW4-24	67.55	Flow 18.0 GPM	Yes No
			Meter 953504.10	Yes No
1432	TW4-25	59.00	Flow 18.6 CPM	(Yes) No
			Meter 569022.00	Yes No

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	

^{*} Depth is measured to the nearest 0.01 feet.

Date 2/10/14

Name Garrin Palmer, Tamer Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1210	MW-4	74.65	Flow 4.4 GPM	Yes No
	.,.		Meter 304943.84	Yes No
1207	MW-26	66.50	Flow 10.5 GAM	(Yes) No
			Meter 397425,17	Yes No
1242	TW4-19	68.44	Flow 13.7 6PM	Yes No
	*		Meter 2121973.00	Yes No
1204	TW4-20	64.73	Flow 9.6 GPM	(Yes) No
			Meter 619531.20	Yes No
1212	TW4-4	78.42	Flow 8.0 GPM	Yes No
			Meter 275226.70	Yes No
1154	TWN-2	26.60	Flow 18.2 GPM	(Yes) No
			Meter 202736.40	Yes No
1201	TW4-22	59.56 69.5	Flow 18.4 GPM	Yes No
			Meter 103923.60	Yes No
1158	TW4-24	67.81	Flow 18.1 GPM	(Yes) No
		÷	Meter 971219.20	Yes No
1150	TW4-25	59.10	Flow 17.8 GPM	(Yes) No
			Meter 579090 70	(es) No

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	
	4 4

^{*} Depth is measured to the nearest 0.01 feet.

Date 2/17/14

Name Garrin Palmer, Tanner Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1216	MW-4	78.20	Flow 4.4 GPM	Yes No
			Meter 310539.14	Yes No
1213	MW-26	66.27	Flow 18.1 GPM	(Yes) No
			Meter 398549.37	(Yes) No
1234	TW4-19	62.30	Flow 17.5 GPM	Yes No
			Meter 2133674.00	Yes No
1210	TW4-20	64.40	Flow 9.8 GPM	Yes No
			Meter 6210 83.16	Yes No
1219	TW4-4	68.94	Flow 7.9 GPM	Yes No
			Meter 280031.70	Yes No
1158	TWN-2	27.03	Flow 18.1 GPM	(Yes) No
			Meter 206209,60	Yes No
1206	TW4-22	59.72	Flow 18.4 GPM	Yes No
			Meter 105826.30	Yes No
1203	TW4-24	67.85	Flow 17.8 Gen	Yes No
			Meter 988765.00	Yes No
1150	TW4-25	59.32	Flow 18:0 GPM	Yes No
			Meter 589176.90	Yes No

Operational Problems (Please list well number):	TW4-19 not pumping. Electricions notified.
	2/18/14 Pulled pump and replaced.

^{*} Depth is measured to the nearest 0.01 feet.

Date Z/24/14 Name Tanner H, Garrin P

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1445	MW-4	68.64	Flow 4.3	Yes No
			Meter 315961,52	Yes No
1432	MW-26	68.15	Flow 10 3	Yes No
			Meter 400707.71	Yes No
1500	TW4-19	69,18	Flow 17.3	(Yes) No
			Meter 2156420.02	Yes No
1429	TW4-20	65.12	Flow 1 10.0	(Yes) No
			Meter 622596.54	Yes No
1449	TW4-4	69.85	Flow 8,D	Yes No
			Meter Z8461Z,4	Yes No
1418	TWN-2	26,98	Flow 18.3	Yes No
	- P		Meter 210321.9	Yes No
MZG	TW4-22	62.10	Flow 18.4	(Yes) No
			Meter 107778.5	Yes No
1423	TW4-24	68.00	Flow 17.8	Yes No
			Meter 1006067.0	Yes No
1415	TW4-25	59,55	Flow 17.0 C-PM	Yes No
			Meter 599311.5	Yes No

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	

^{*} Depth is measured to the nearest 0.01 feet.

Monthly Depth Check Form
2-28-14 Name Tanner H. Clayton M.

Date

^{*} Depth is measured to the nearest 0.01 feet

Date 3/3/2014

Name Tanner Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1256	MW-4	69.57	Flow 4,3 GAM	Yes No
			Meter 321487.59	Yes No
1253	MW-26	6600	Flow 10.0 GPM	Yes No
1253			Meter 402246.08	Yes No
1315	TW4-19	72,85	Flow 18.0 GPM	Yes No
			Meter 🗗 z188582.04	Yes No
1249	TW4-20	65.35	Flow 9.5 GPM	Yes No
			Meter 623935,49	Yes No
1300	TW4-4	70.02	Flow 7.8 GPM	Yes No
			Meter 289048.5	Yes No
1240	TWN-2	28.78	Flow 18.6 GPM	Yes No
		-	Meter 214189.3	Yes No
1247	TW4-22	59,50	Flow 18.5 GPM	Yes No
			Meter 109642.3	Yes No
1244	TW4-24	67,40	Flow 18.0 GPM	(Yes) No
			Meter 1022636.1	Yes No
1236	TW4-25	66.90	Flow 16.7 GPM	Yes No
			Meter 609343.6	Yes No

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	

^{*} Depth is measured to the nearest 0.01 feet.

Date 3/10/14

Name Garon Palmer

				System Operational (If no note
Time	Well	Depth*	Comments	any problems/corrective actions)
1328	MW-4	70.32	Flow 4.4 GPM	(Yes) No
			Meter 376810.12	(Yes) No
1324	MW-26	6702	Flow 10.5 GPM	(Yes) No
			Meter 404356.62	(Yes) No
1348	TW4-19	68,41	Flow 18,5 GPM	(Yes) No
			Meter 2219491.00	Yes No
1321	TW4-20	65.73	Flow 9.8 6PM	Yes No
			Meter 625477.84	Yes No
1334	TW4-4	69.48	Flow 7. Z GPM	Yes No
			Meter 293787.40	Yes No
1308	TWN-2	27.68	Flow 18.7 GPM	Yes No
			Meter 217894.90	Yes No
1316	TW4-22	59.48	Flow 17.8 GPM	(Yes) No
			Meter 111239.80	Yes No
1312	TW4-24	80.14	Flow 9.0 GPM	Yes No
			Meter 1039455.0	Yes No
1305	TW4-25	61.80	Flow 18.6 Gem	Yes No
			Meter 619302-30	Yes No

Operational Problems (Please list well number):					
	The state of the s				
Corrective Action(s) Taken (Please list well number):					

^{*} Depth is measured to the nearest 0.01 feet.

Date 3/18/14

Name Garrin Palmer, Tanner Holliday

		D		System Operational (If no note
Time	Well	Depth*	Comments	any problems/corrective actions)
1213	MW-4	67.50	Flow 4.4 GPM	Yes No
			Meter 332528-09	Yes No
1215	MW-26	65.10	Flow 10.5 GPM	Ves No
			Meter 406525, 49	Yes No
1230	TW4-19	65-14	Flow 18.0 GPM	(Yes) No
			Meter 2242333.00	Yes No
1209	TW4-20	59.80	Flow 10.0 GPM	Yes No
	-		Meter 626984.33	Yes No
1218	TW4-4	69.40	Flow 7-8 GPM	Yes No
			Meter 298590.20	Yes No
1157	TWN-2	27.60	Flow 18-6 GPM	(Yes) No
			Meter 22201740	(Yes) No
1206	TW4-22	59.23	Flow 18-1 GPM	Yes No
			Meter 113744.40	Yes No
1203	TW4-24	66.96	Flow 17.4 6PM	(Yes) No
			Meter 1058274.20	Yes No
1153	TW4-25	59.36	Flow 18.1 Gen	(es) No
			Meter 630679,90	(Ves) No

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	

^{*} Depth is measured to the nearest 0.01 feet.

Date 3/24/14 Name Garria Palmer / Tanner Holliday

System Operational (If no note

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)				
1323	MW-4	70.89	Flow 4.4 GPM	Yeş No				
			Meter 337202,35	Yes No				
1320	MW-26	68.17	Flow 10.5 GPM	Yes No				
			Meter 407674.40	Yes No				
1342	TW4-19	64.30	Flow 18.1 GPM	Yes No				
			Meter 22590 40.00	Yes No				
1317	TW4-20	66.90	Flow 9.0 GPM	(Yes) No				
			Meter 628172.54	Yes No				
1327	TW4-4	69.98	Flow 8.0 GPM	(Yes) No				
			Meter 302413.90	Yes No				
1305	TWN-2	28.19	Flow 18.7 GPM	Yes No				
			Meter 225227-30	Yes No				
1313	TW4-22	59.60	Flow 17.6 GPM	(Yes) No				
			Meter 115060.40	Yes No				
1309	TW4-24	67.45	Flow 18.0 GPM	Yes No				
			Meter (072634.11	Yes No				
1301	TW4-25	62.50	Flow 18.6 GPM	(Yes) No				
			Meter 639111.80	(Yes) No				

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	

^{*} Depth is measured to the nearest 0.01 feet.

Date 3/31/14 Name Garrin Palmer, Tancer Holliday

	***			System Operational (If no note
Time	Well	Depth*	Comments	any problems/corrective actions)
1414	MW-4	69.18	Flow 4.4 GRM	Yes No
			Meter 342766,37	Yes No
1411	MW-26	67.19	Flow 10.5 GPM	Yes No
			Meter 409794.90	(Yes) No
1458	TW4-19	69.42	Flow 18.1 6PM	Yes No
			Meter 2279149.00	Yes No
1406	TW4-20	78.40	Flow 9.1 GPM	Yes) No
			Meter 6'29683.06	Yes No
1415	TW4-4	70.14	Flow 8.0 Gen	(Yes) No
			Meter 307062.10	Yes No
1354	TWN-2	28.00	Flow 18.6 GPM	Yes No
			Meter 228925.50	(Yes) No
1403	TW4-22	82.25	Flow 15.0 open	Yes No
			Meter 117277.68	(Yes) No
1359	TW4-24	68.10	Flow 18.7 GPM	Yes No
			Meter 1089674,60	(Yes) No
1352	TW4-25	60.29	Flow 18.0 GPM	(es) No
			Meter 649076.90	(Yes) No

Operational Problems (Please list well number):	W
Corrective Action(s) Taken (Please list well number):	

^{*} Depth is measured to the nearest 0.01 feet.

Tab D

Kriged Current Quarter Groundwater Contour Map, Details Map, and Depth to Water Summary

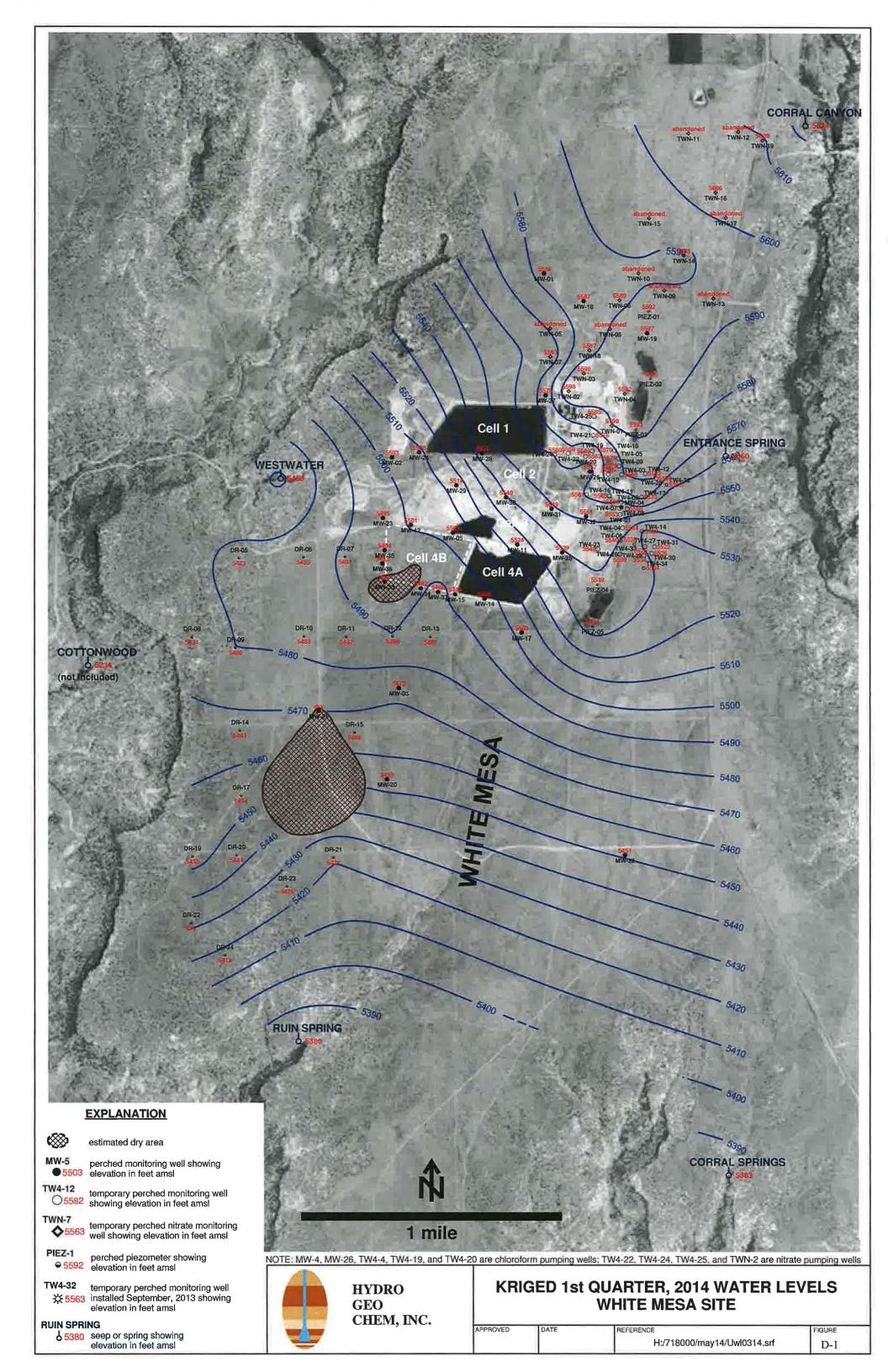
NAME: Garrin Palmer, Tanner Holliday, Clayton Most

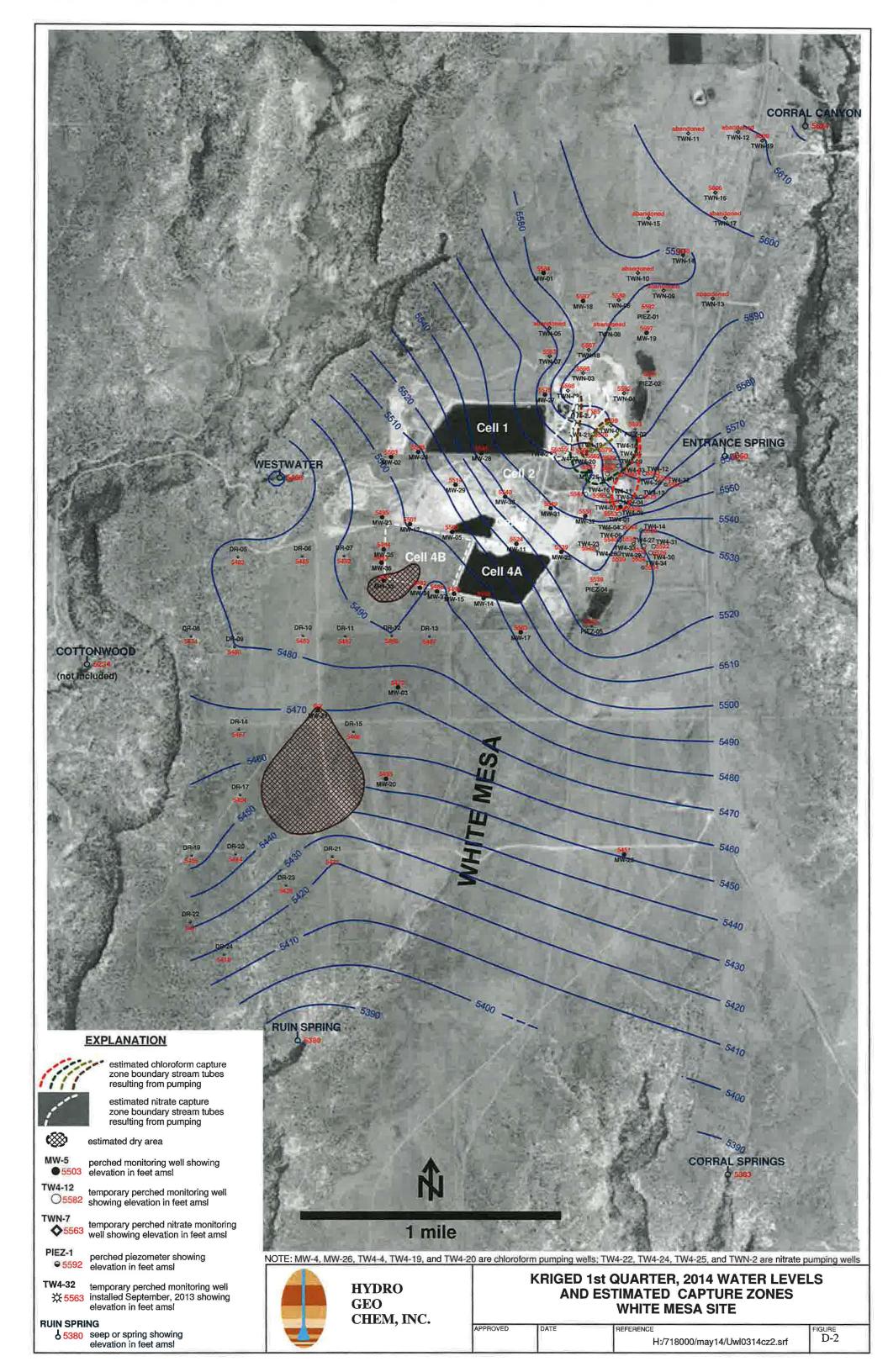
DATE: 3/27/2014

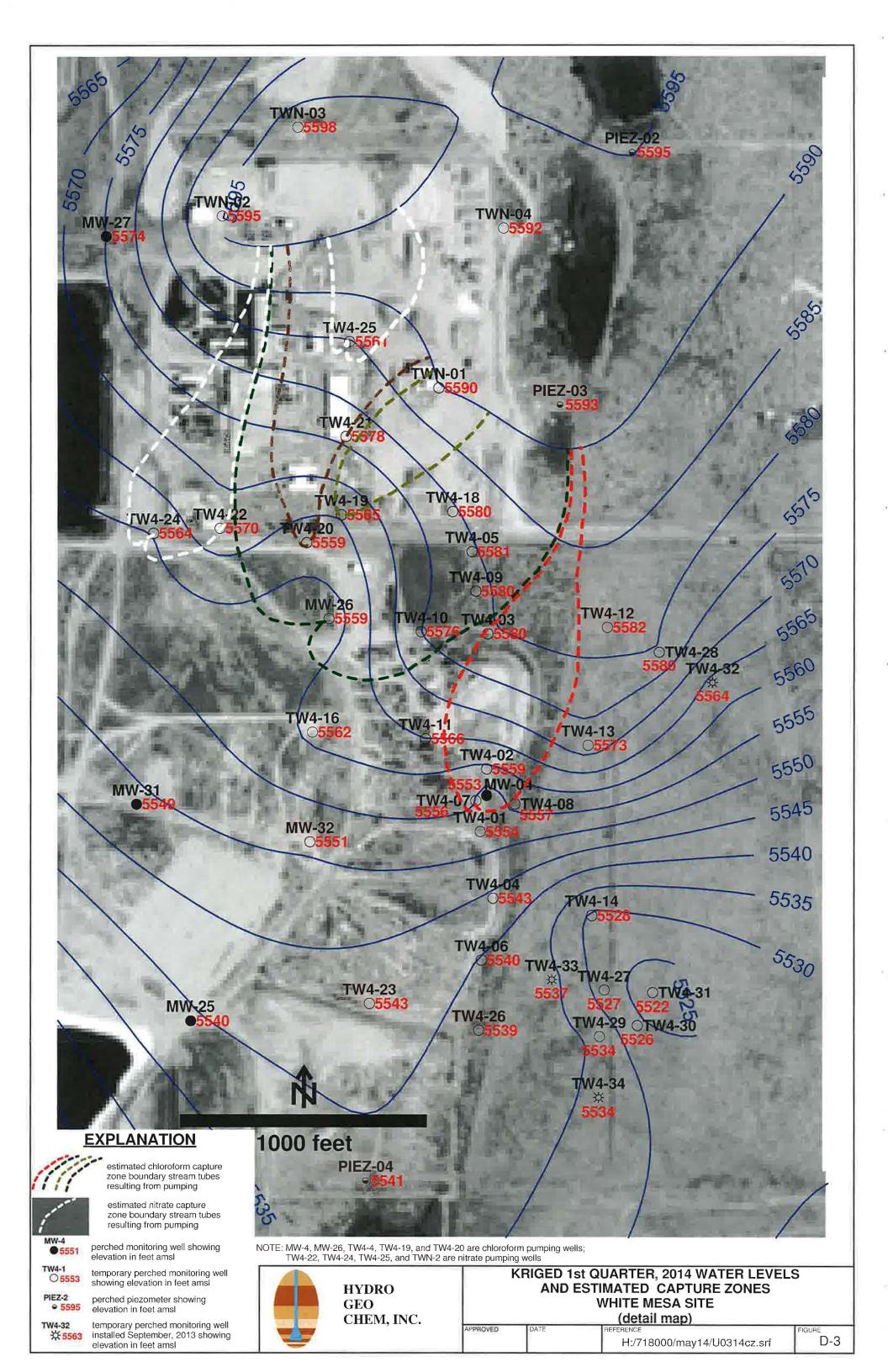
823

840 835 TW4-32

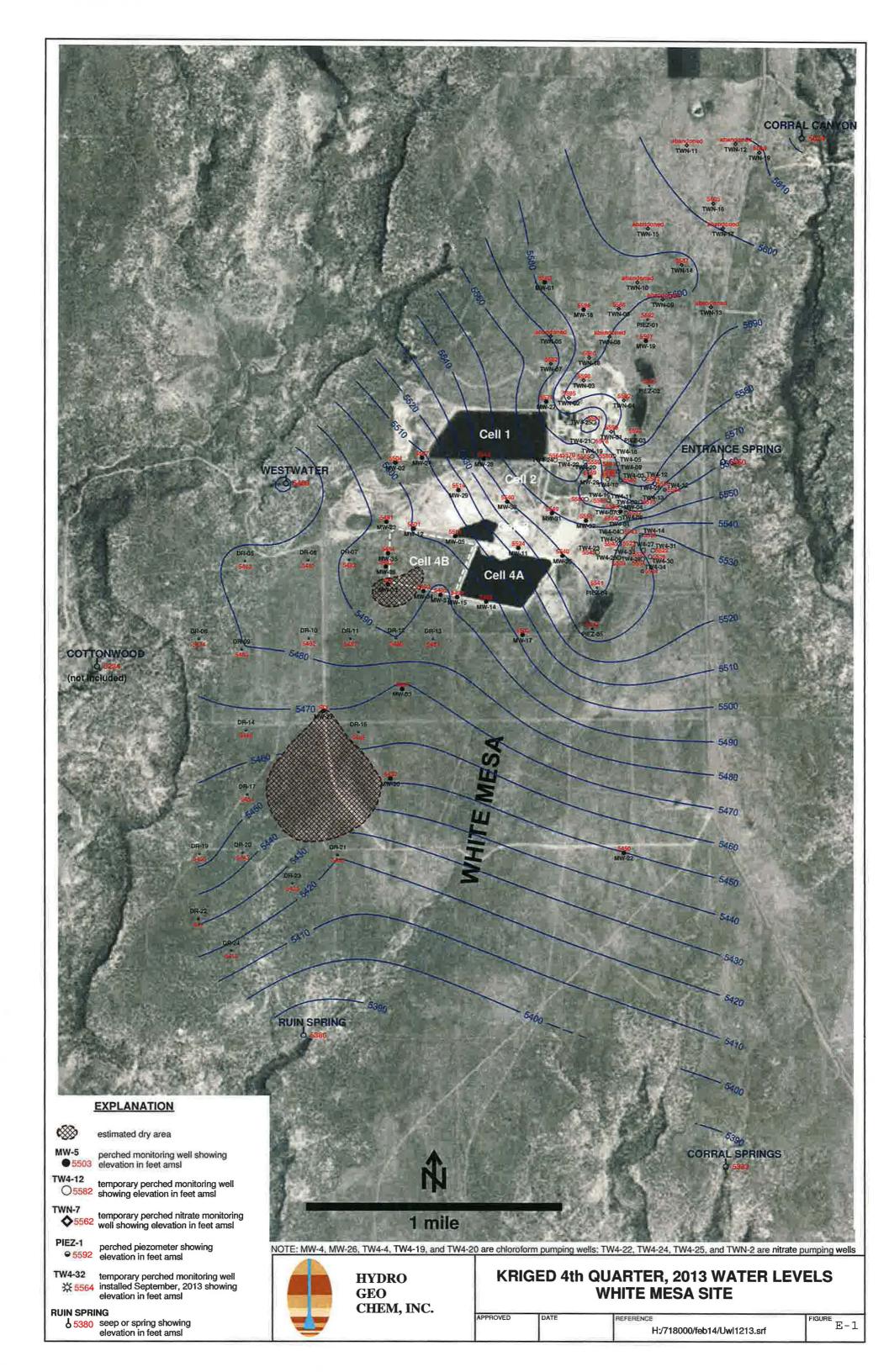
TW4-33

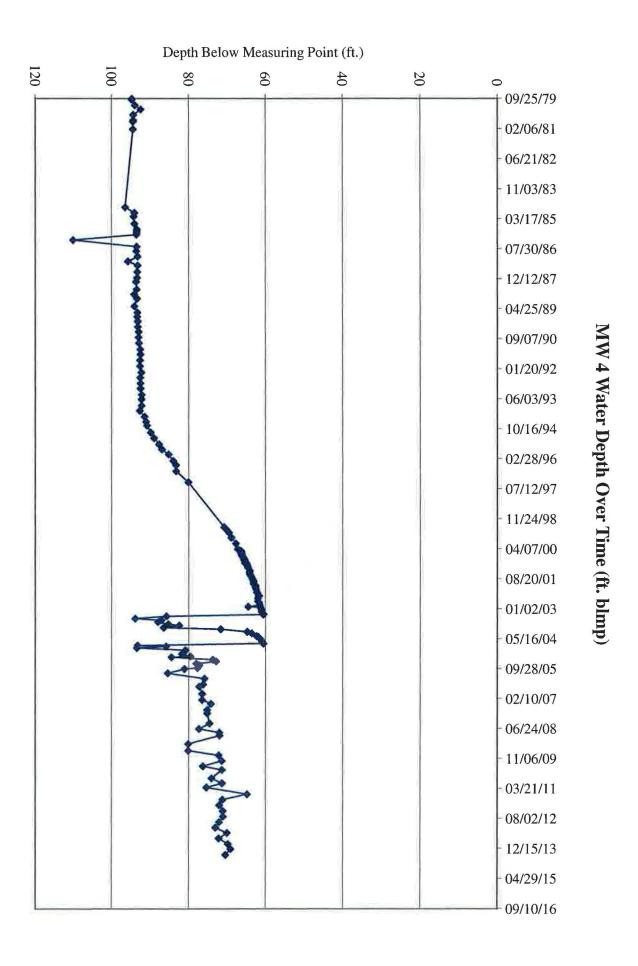

TW4-34

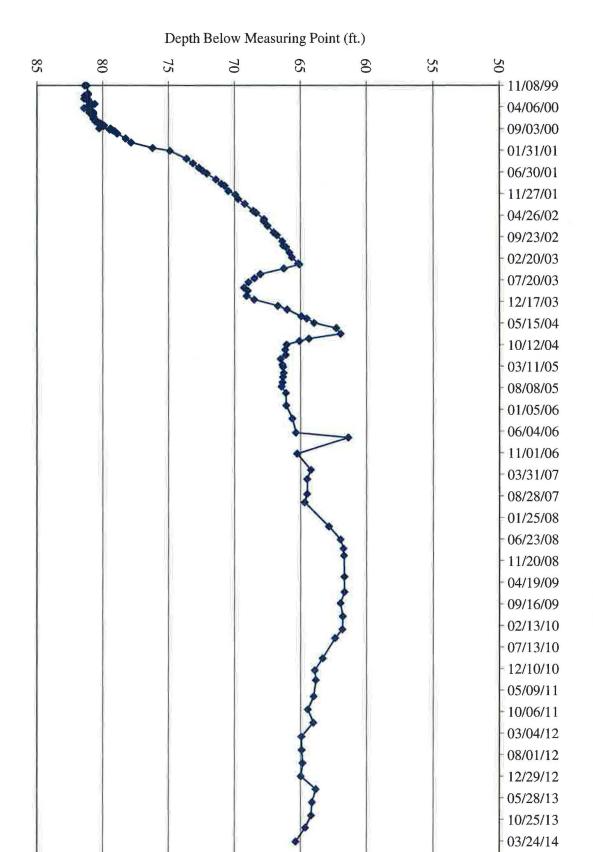

48.60


70.24

69.45

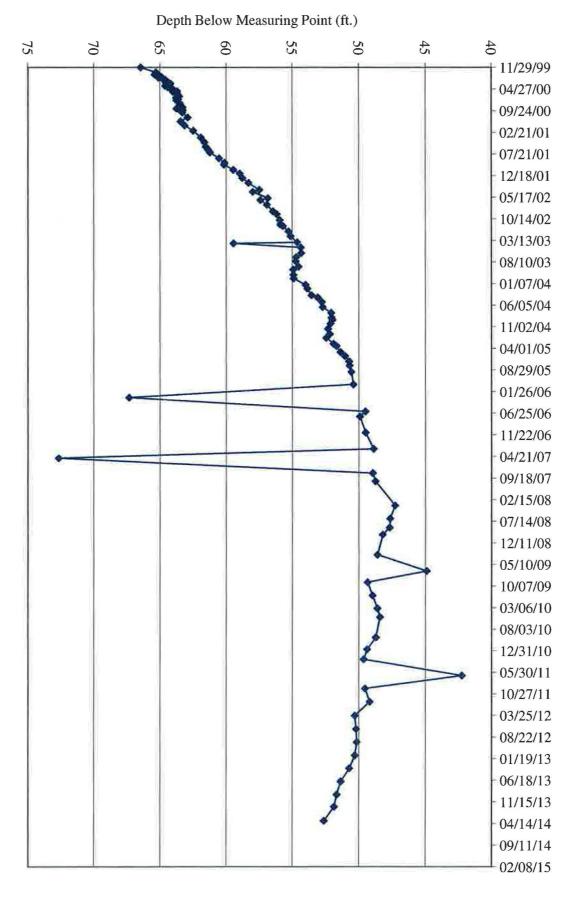

TIME	WELL	Static level	TIME	WELL	Static Level	TIME	WELL	Static Level	TIME	WELL	Static Level
1309	MW-1	63.81	718	MW-4	70.42	1421	PIEZ-1	63.16	NA	DR-1	ABANDON
1438	MW-2	109.80	755	TW4-1	65.38	1237	PIEZ-2	33.62	NA	DR-2	ABANDON
1456	MW-3	82.67	759	TW4-2	65.80	1415	PIEZ-3	45.16			
1457	MW-3A	84.61	744	TW4-3	52.61	1508	PIEZ-4	51.81			
1443	MW-5	106.05	1050	TW4-4	69.38	1510	PIEZ-5	49.80	1232	DR-5	82.83
1438	MW-11	86.40	739	TW4-5	61.26	1431	TWN-1	58.06	1229	DR-6	94.29
1445	MW-12	108.20	804	TW4-6	69.13	702	TWN-2	28.90	1446	DR-7	92.10
1452	MW-14	103.30	751	TW4-7	65.67	1224	TWN-3	36.50	1237	DR-8	51.02
1453	MW-15	106.18	942	TW4-8	65.02	1230	TWN-4	50.02	1240	DR-9	86.25
1500	MW-17	72.40	741	TW4-9	58.98		TWN-5	Abandon	1242	DR-10	77.91
1426	MW-18	70.67	736	TW4-10	58.88	1423	TWN-6	76.44	1453	DR-11	98.20
1418	MW-19	58.31	801	TW4-11	58.59	1428	TWN-7	86.41	1451	DR-12	90.08
1306	MW-20	85.95	818	TW4-12	42.56		TWN-8	Abandon	1449	DR-13	69.55
1321	MW-22	66.55	829	TW4-13	47.04		TWN-9	Abandon	1249	DR-14	76.08
1442	MW-23	116.60	831	TW4-14	84.02		TWN-10	Abandon	1246	DR-15	92.65
1436	MW-24	113.74	704	TW4-15	68.80		TWN-11	Abandon	NA	DR-16	ABANDON
955	MW-25	73.44	947	TW4-16	62.85		TWN-12	Abandon	1251	DR-17	64.62
704	MW-26	68.80	951	TW4-17	74.27		TWN-13	Abandon	NA	DR-18	ABANDON
727	MW-27	52.59	1204	TW4-18	62.02	1253	TWN-14	61.62	1254	DR-19	63.00
1433	MW-28	75.59	700	TW4-19	66.28		TWN-15	Abandon	1256	DR-20	55.02
1034	MW-29	100.98	712	TW4-20	67.36	1259	TWN-16	46.99	1303	DR-21	100.98
1030	MW-30	74.73	1208	TW4-21	63.34		TWN-17	Abandon	1315	DR-22	DRY
1436	MW-31	67.45	709	TW4-22	59.64	1218	TWN-18	58.58	1300	DR-23	70.30
951	MW-32	74.27	807	TW4-23	65.02	1150	TWN-19	52.48	1313	DR-24	43.80
1002	MW-33	DRY	708	TW4-24	65.50				NA	DR-25	ABANDON
1459	MW-34	107.79	710	TW4-25	60.12						
1443	MW-35	112.22	811	TW4-26	63.15						
1514	MW-36	110.50	929	TW4-27	80.39						
1456	MW-37	113.85	821	TW4-28	37.17						
			838	TW4-29	71.72						
			843	TW4-30	76.83						
			919	TW4-31	82.33						



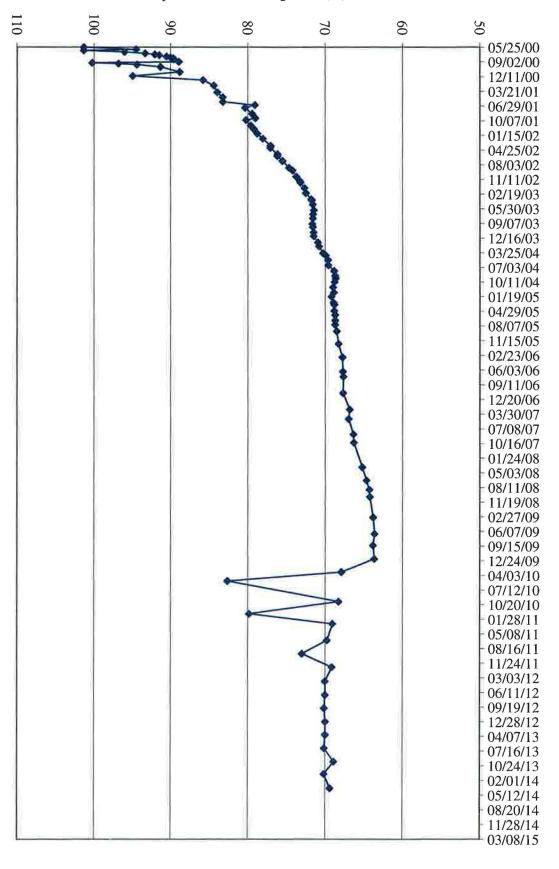

 $\label{eq:TabE} \mbox{Tab E}$ Kriged Previous Quarter Groundwater Contour Map

Tab F

Hydrographs of Groundwater Elevations Over Time for Chloroform Monitoring Wells

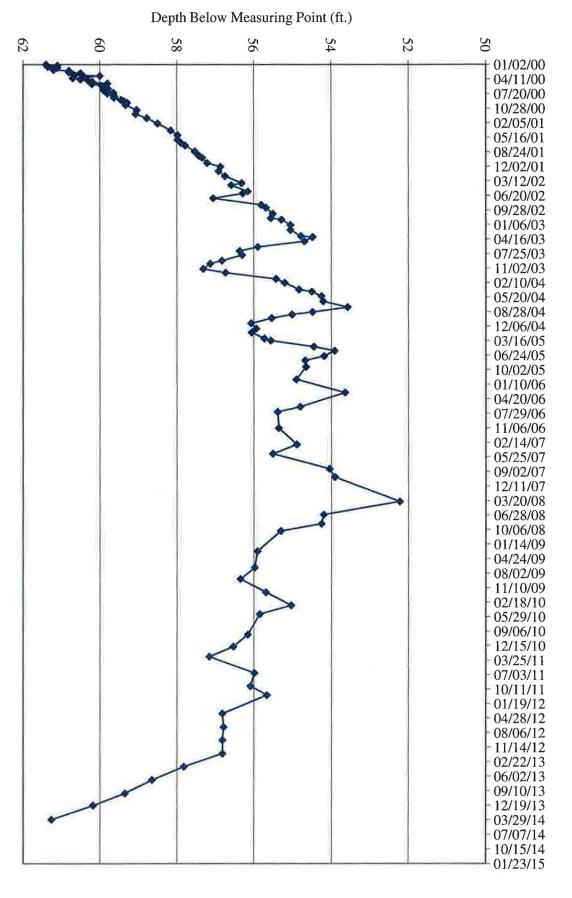

TW4-1 Water Depth Over Time (ft. blmp)

08/21/14 01/18/15

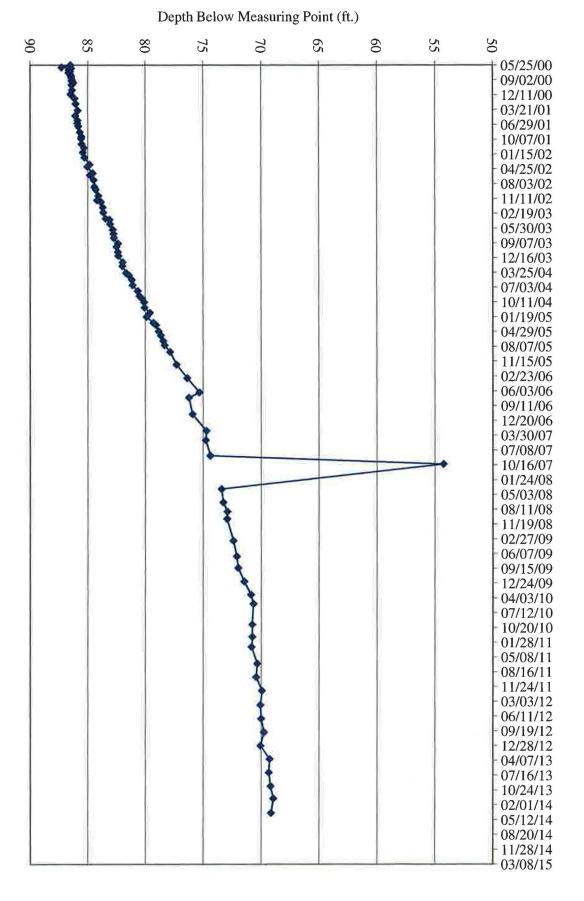

Depth Below Measuring Point (ft.) 85 80 75 70 65 60 55 50 - 11/08/99 04/06/00 09/03/00 01/31/01 06/30/01 11/27/01 04/26/02 09/23/02 02/20/03 07/20/03 12/17/03 05/15/04 10/12/04 03/11/05 08/08/05 01/05/06 06/04/06 11/01/06 03/31/07 08/28/07 01/25/08 06/23/08 11/20/08 04/19/09 09/16/09 02/13/10 07/13/10 12/10/10 05/09/11 10/06/11 03/04/12 08/01/12 12/29/12 05/28/13 10/25/13 03/24/14 08/21/14

TW4-2 Water Depth Over Time (ft. blmp)

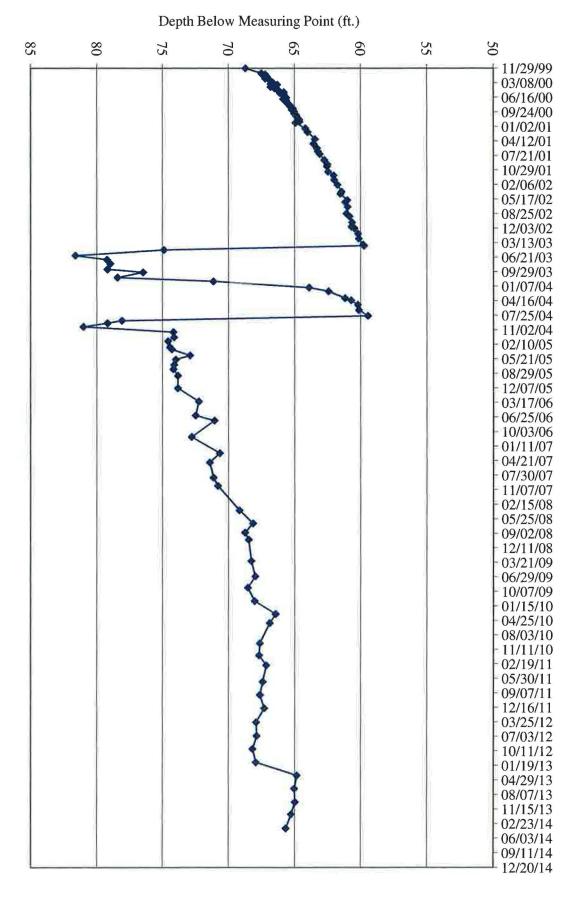
01/18/15

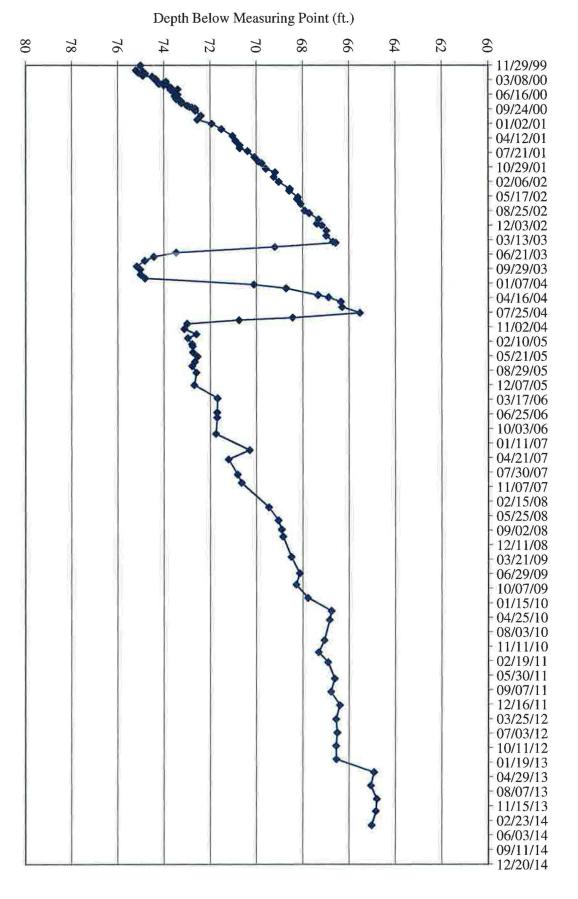


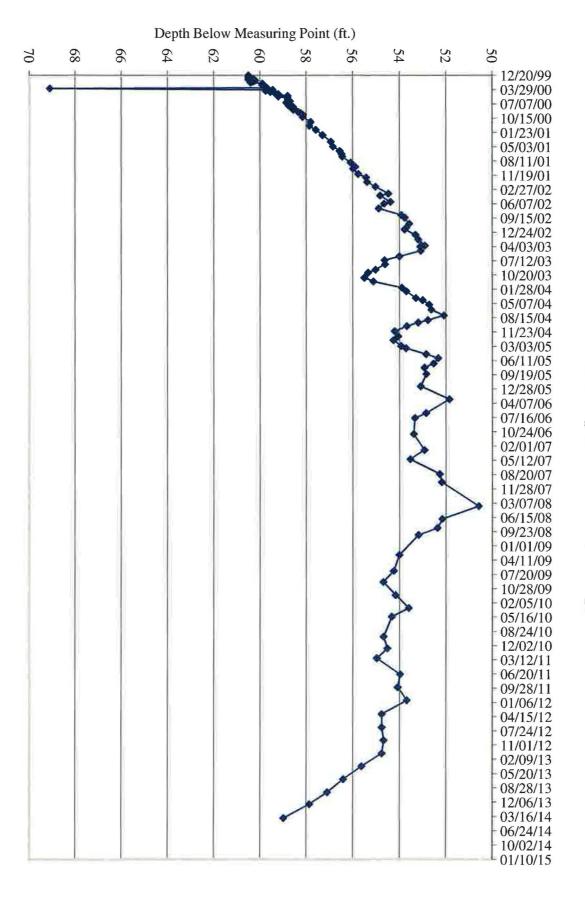
TW4-3 Water Depth Over Time (ft. blmp)



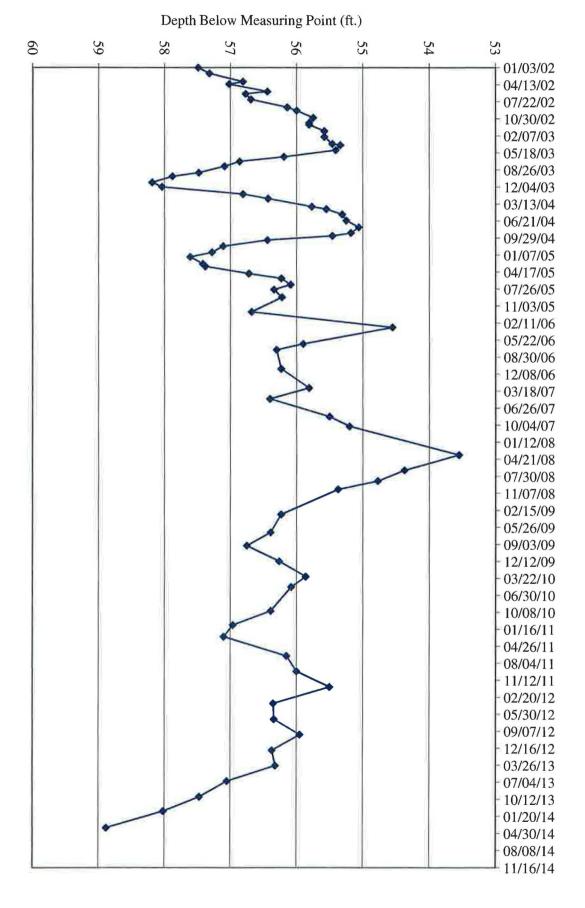
TW4-4 Water Depth Over Time (ft. blmp)



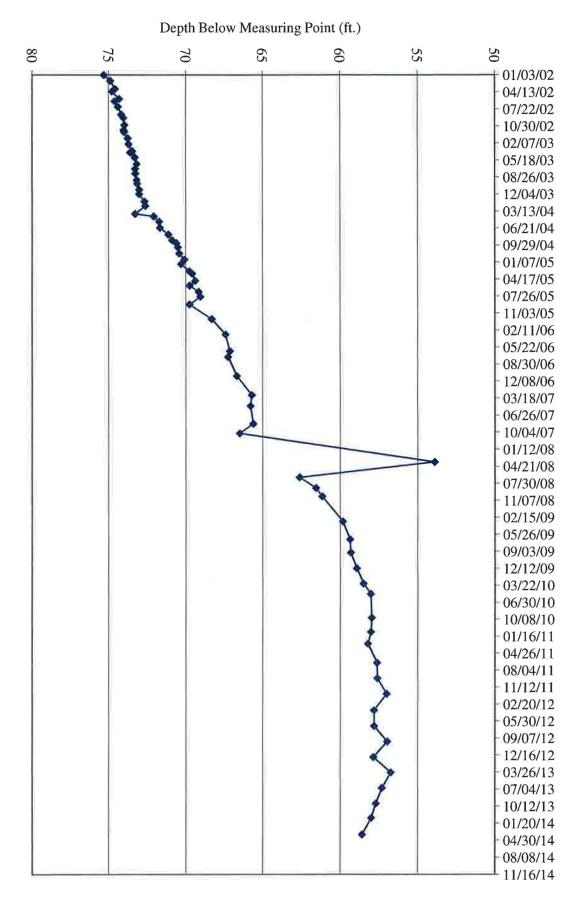

TW4-6 Water Depth Over Time (ft. blmp)

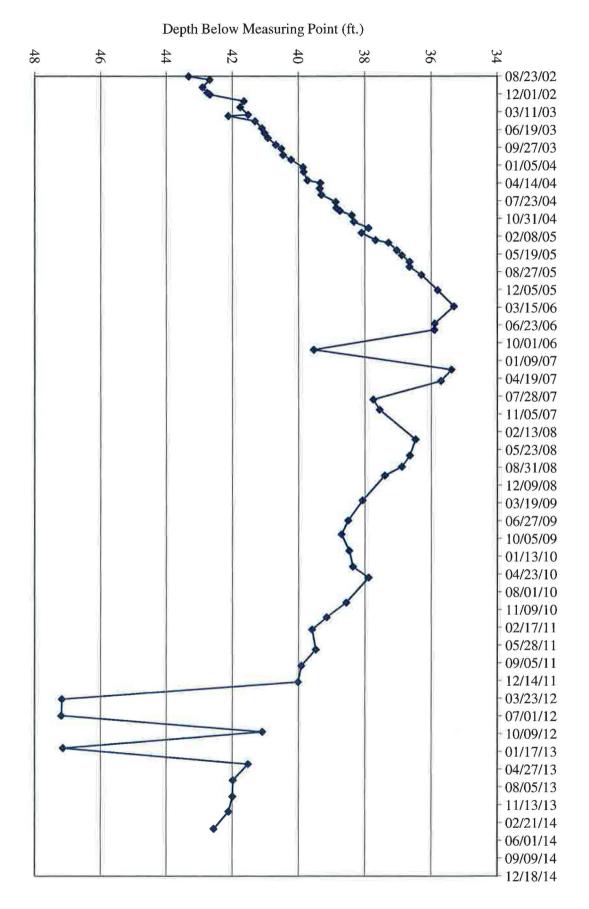


TW4-7 Water Depth Over Time (ft. blmp)

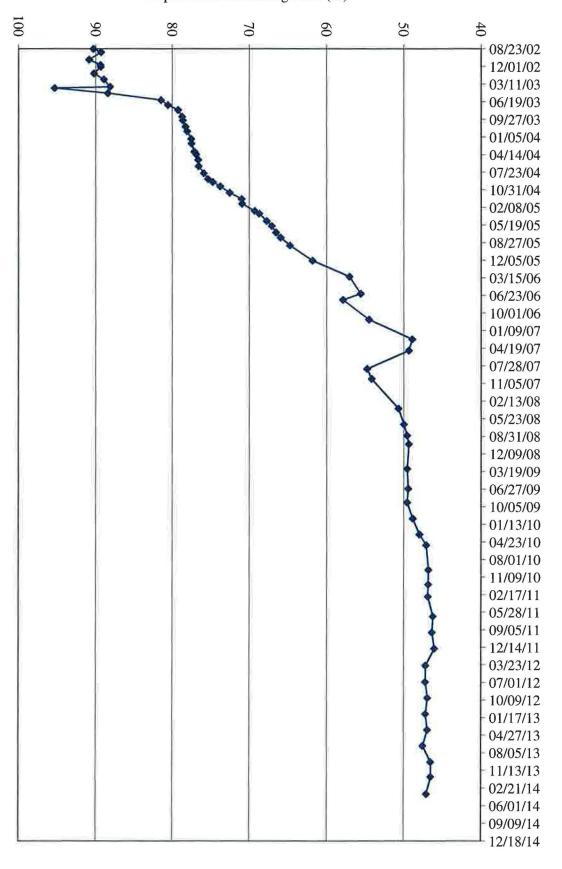


TW4-8 Water Depth Over Time (ft. blmp)

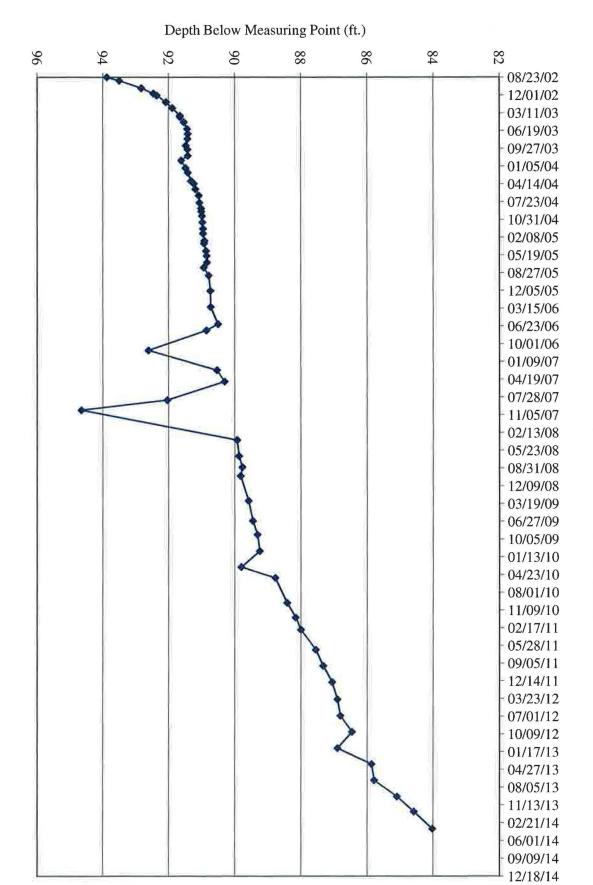



TW4-9 Water Depth Over Time (ft. blmp)

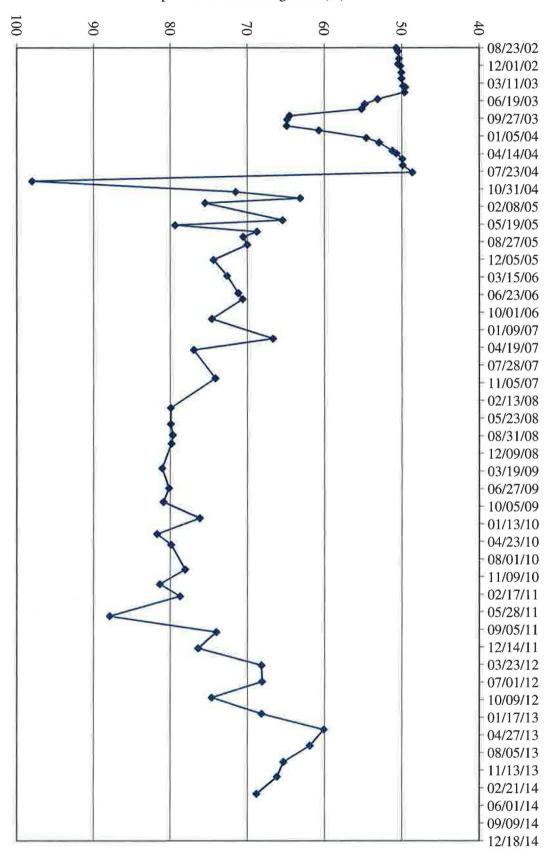
TW4-10 Water Depth Over Time (ft. blmp)



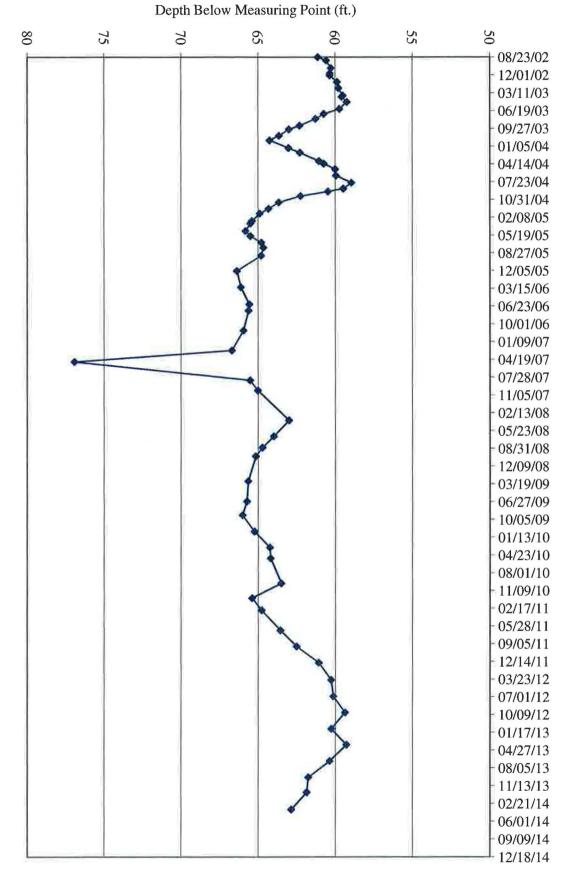
TW4-11 Water Depth Over Time (ft. blmp)



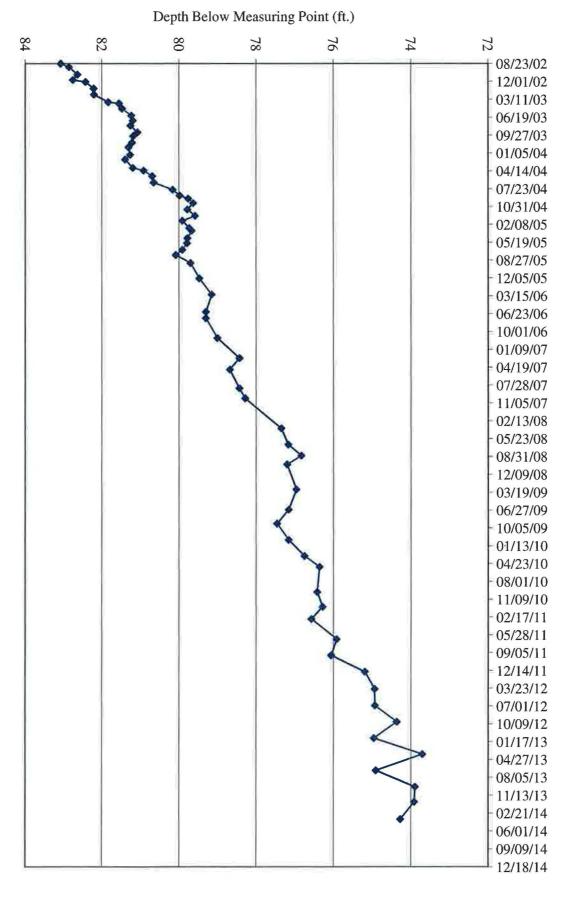
TW4-12 Water Depth Over Time (ft. blmp)

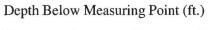


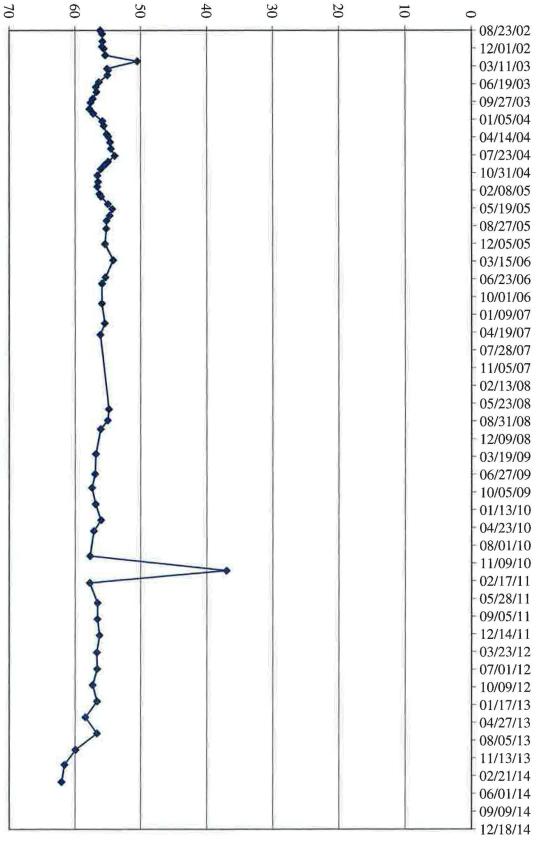
TW4-13 Water Depth Over Time (ft. blmp)



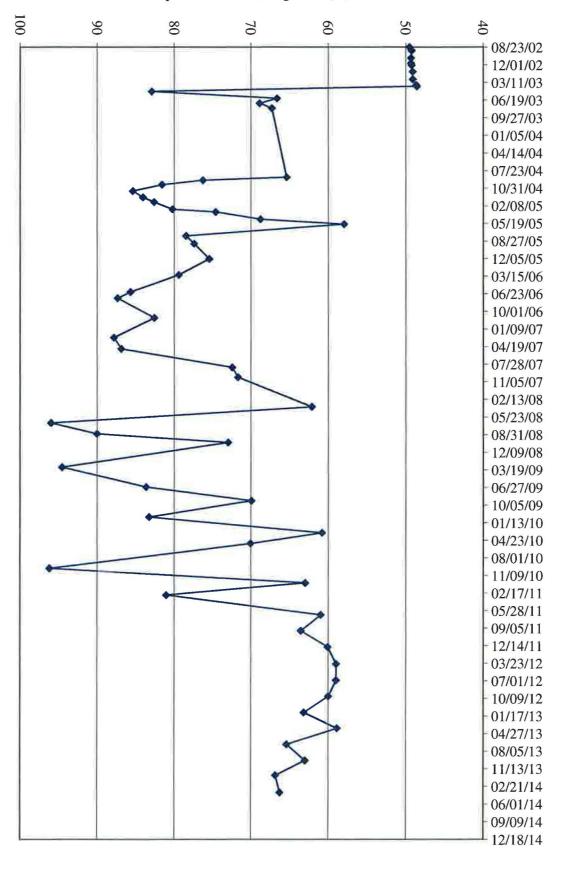
TW4-14 Water Depth Over Time (ft. blmp)

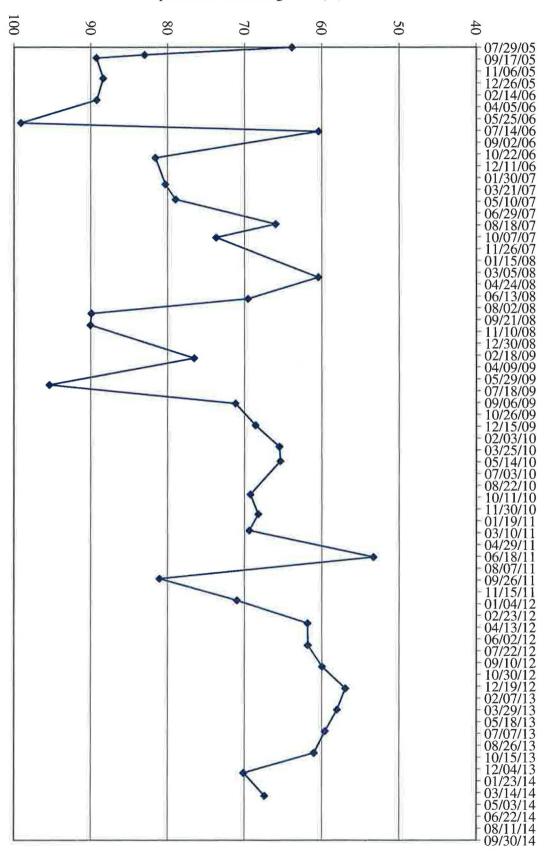



MW-26 Water Depth Over Time (ft. blmp)

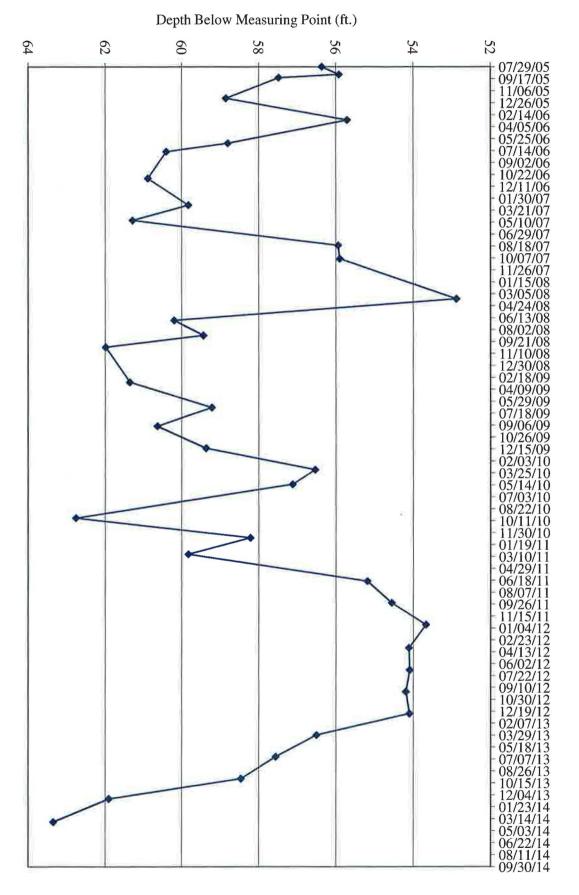

TW4-16 Water Depth Over Time (ft. blmp)

MW-32 Water Depth Over Time (ft. blmp)

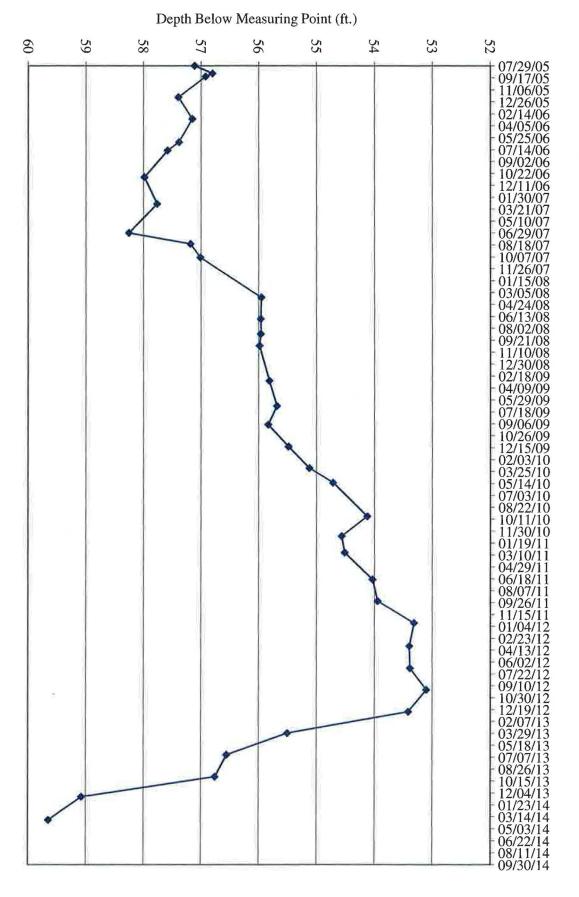



TW4-18 Water Depth Over Time (ft. blmp)

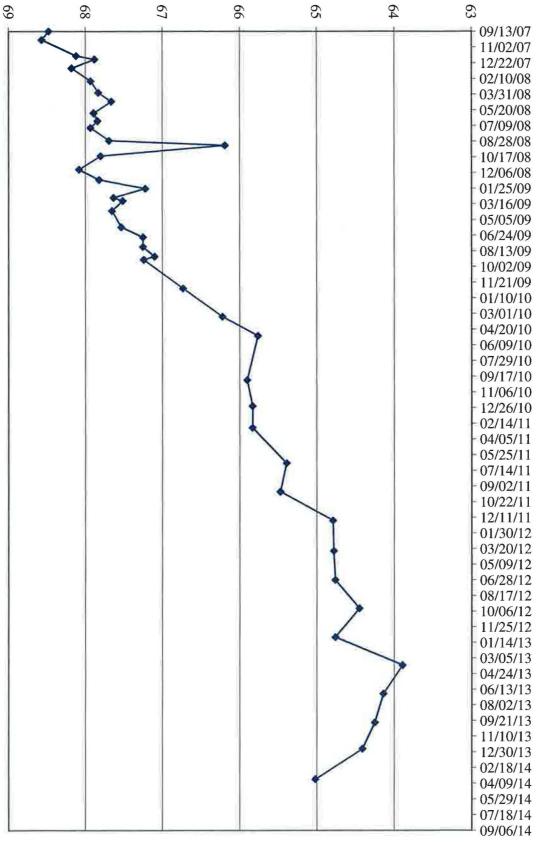
Depth Below Measuring Point (ft.)

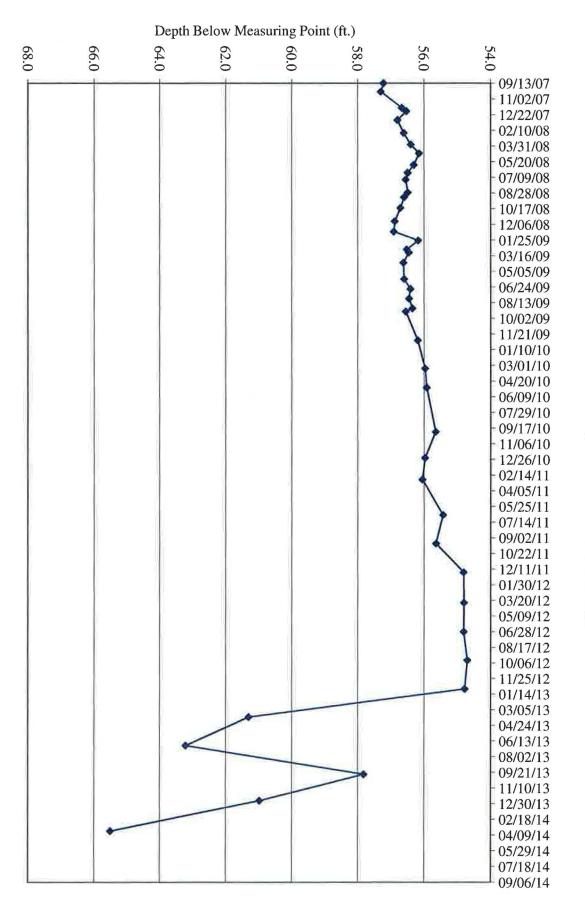

TW4-19 Water Depth Over Time (ft. blmp)

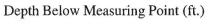
Depth Below Measuring Point (ft.)

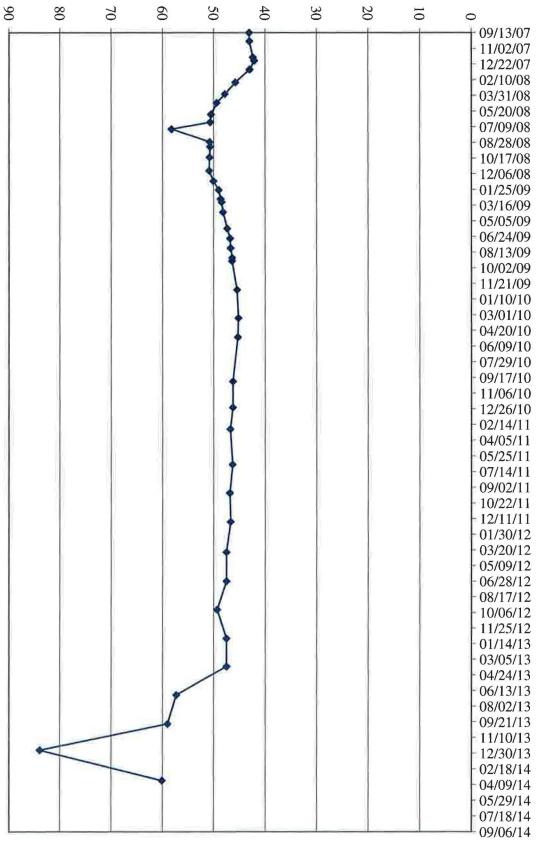


TW4-20 Water Depth Over Time (ft. blmp)

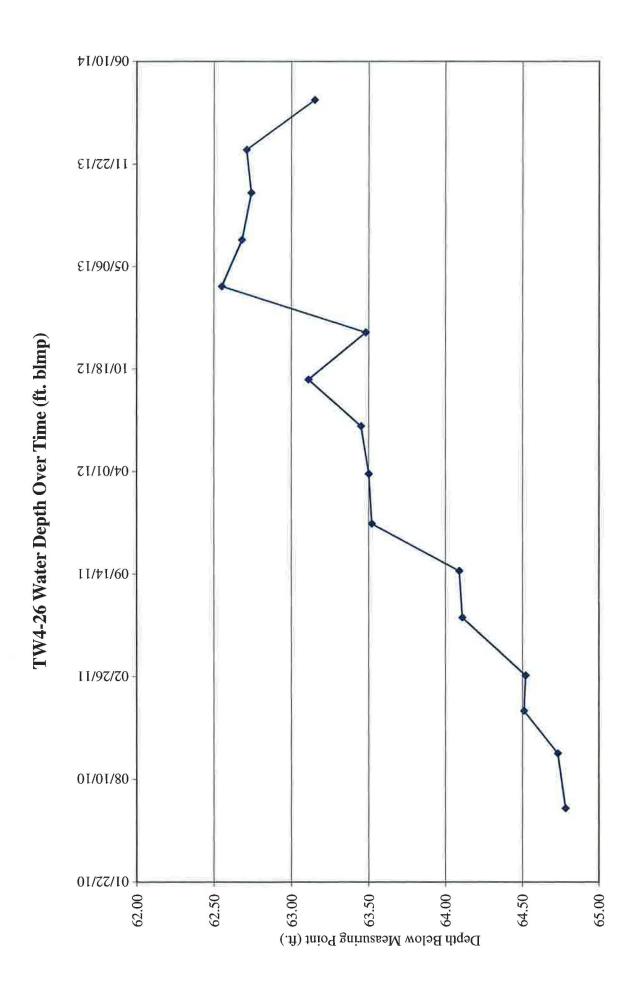

TW4-21 Water Depth Over Time (ft. blmp)

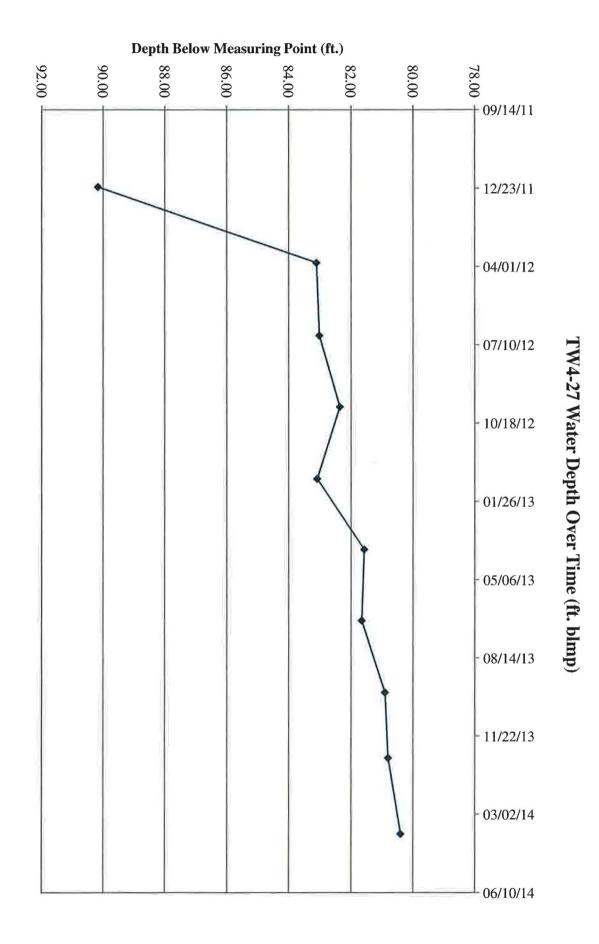

TW4-22 Water Depth Over Time (ft. blmp)

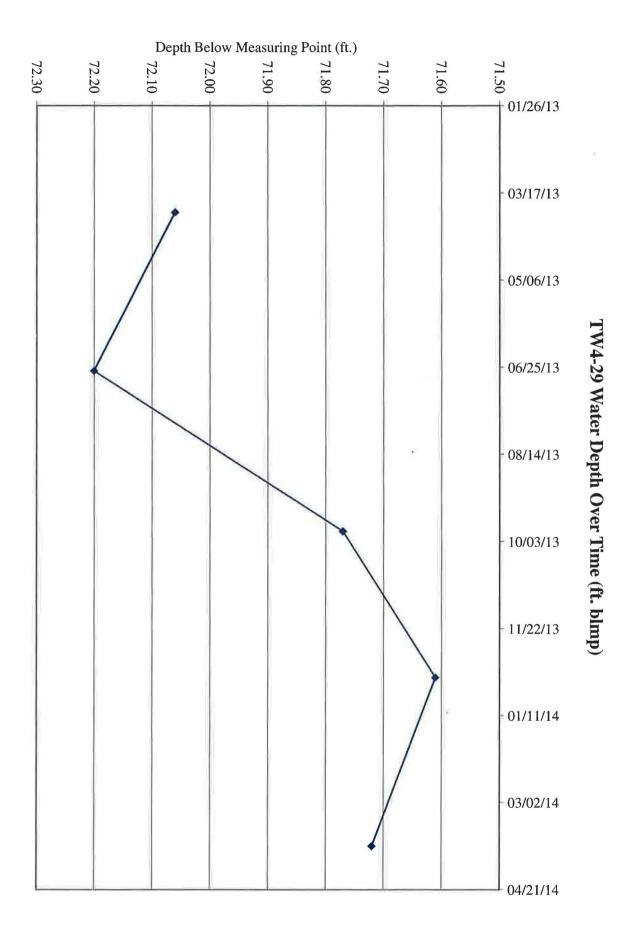

Depth Below Measuring Point (ft.)

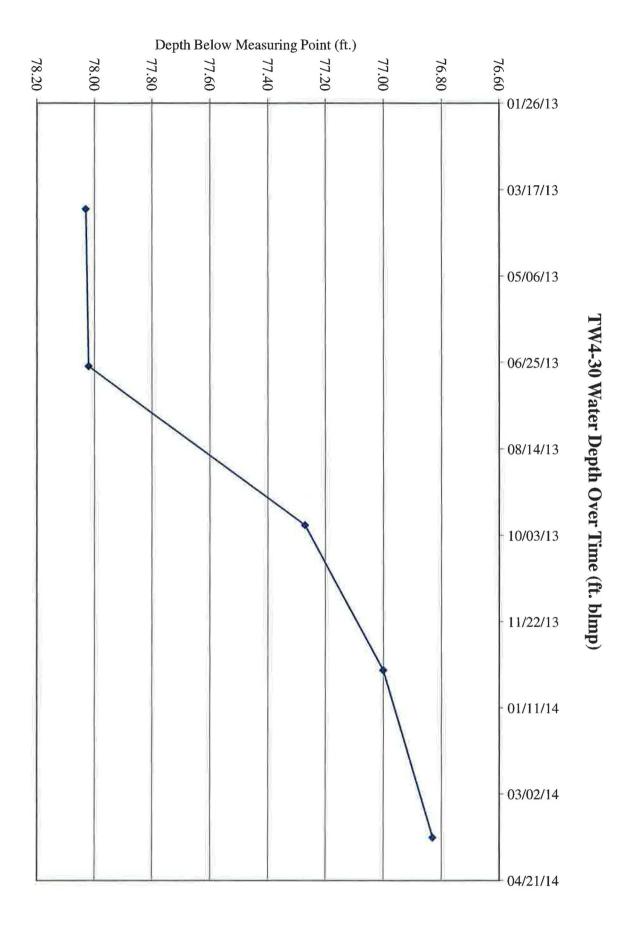


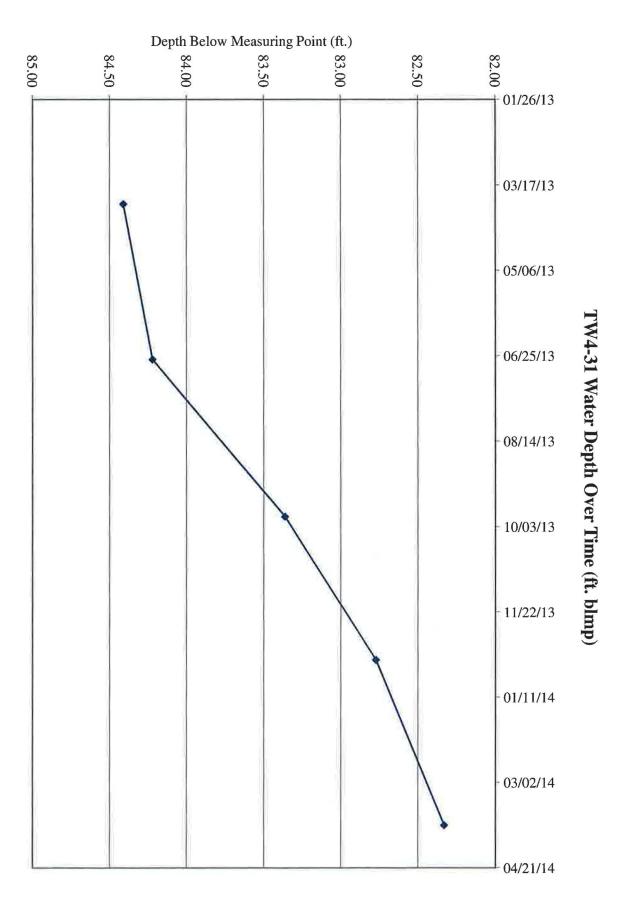
TW4-23 Water Depth Over Time (ft. blmp)

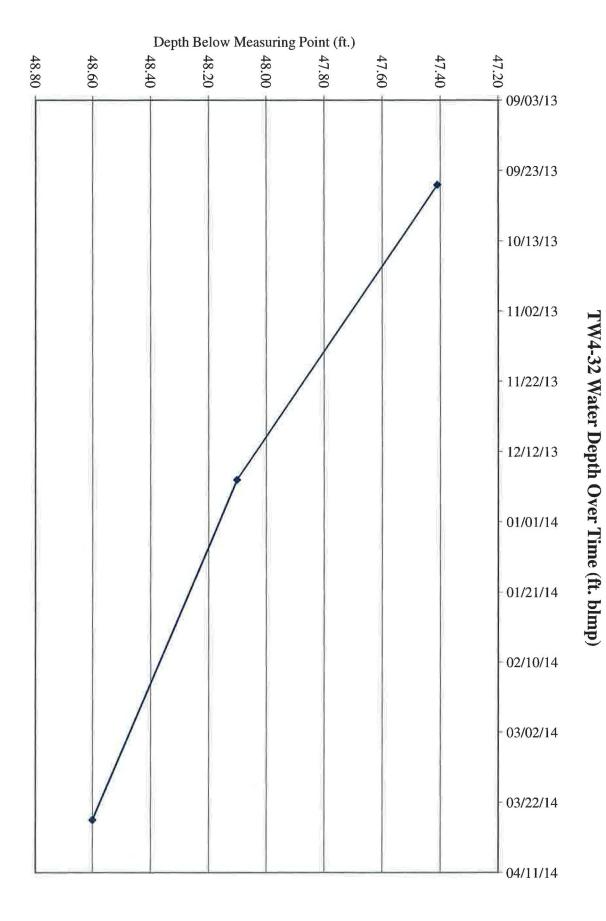


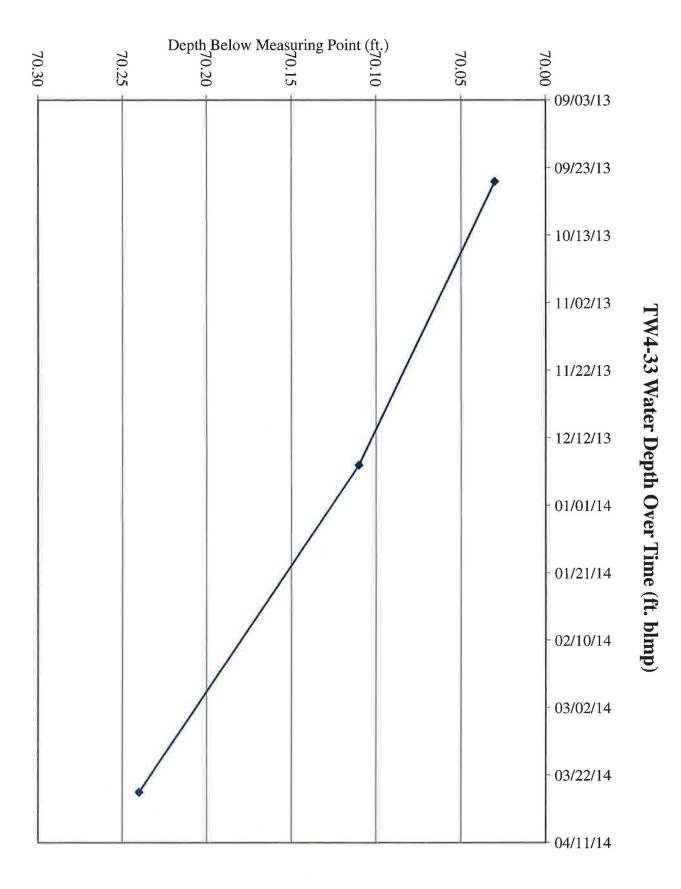

TW4-24 Water Depth Over Time (ft. blmp)

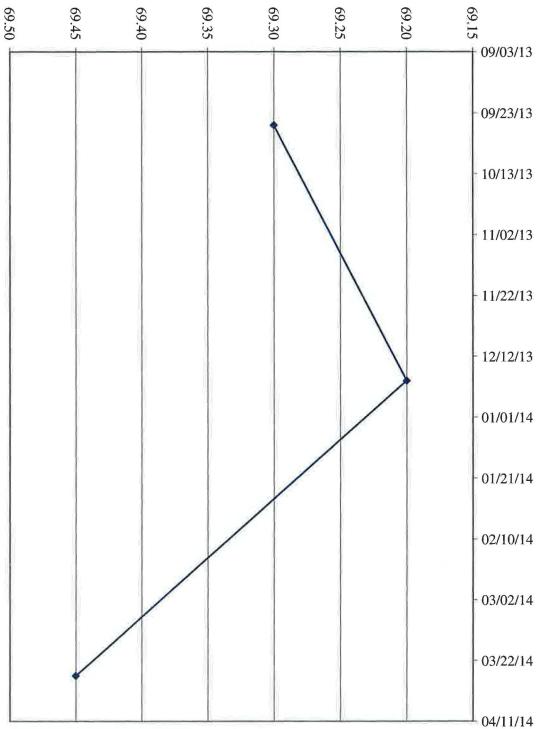



TW4-25 Water Depth Over Time (ft. blmp)









TW4-34 Water Depth Over Time (ft. blmp)

Tab G

Depths to Groundwater and Elevations Over Time for Chloroform Monitoring Wells

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,620.77	5,622.33	1.56				123.6
5,527.63				09/25/79	94.70	93.14	
5,527.63				10/10/79	94.70	93.14	
5,528.43				01/10/80	93.90	92.34	
5,529.93				03/20/80	92.40	90.84	
5,528.03				06/17/80	94.30	92.74	
5,528.03				09/15/80	94.30	92.74	
5,527.93				10/08/80	94.40	92.84	
5,527.93				02/12/81	94.40	92.84	
5,525.93				09/01/84	96.40	94.84	
5,528.33				12/01/84	94.00	92.44	
5,528.13				02/01/85	94.20	92.64	
5,528.33				06/01/85	94.00	92.44	
5,528.93				09/01/85	93.40	91.84	
5,528.93				10/01/85	93.40	91.84	
5,528.93				11/01/85	93.40	91.84	
5,528.83				12/01/85	93.50	91.94	
5,512.33				03/01/86	110.00	108.44	
5,528.91				06/19/86	93.42	91.86	
5,528.83				09/01/86	93.50	91.94	
5,529.16				12/01/86	93.17	91.61	
5,526.66				02/20/87	95.67	94.11	
5,529.16				04/28/87	93.17	91.61	
5,529.08				08/14/87	93.25	91.69	
5,529.00				11/20/87	93.33	91.77	
5,528.75				01/26/88	93.58	92.02	
5,528.91				06/01/88	93.42	91.86	
5,528.25				08/23/88	94.08	92.52	
5,529.00				11/02/88	93.33	91.77	
5,528.33				03/09/89	94.00	92.44	
5,529.10				06/21/89	93.23	91.67	
5,529.06				09/01/89	93.27	91.71	
5,529.21				11/15/89	93.12	91.56	
5,529.22				02/16/90	93.11	91.55	
5,529.43				05/08/90	92.90	91.34	
5,529.40				08/07/90	92.93	91.37	
5,529.53				11/13/90	92.80	91.24	
5,529.86				02/27/91	92.47	90.91	
5,529.91				05/21/91	92.42	90.86	
5,529.77				08/27/91	92.56	91.00	
5,529.79				12/03/91	92.54	90.98	
5,530.13				03/17/92	92.20	90.64	
5,529.85				06/11/92	92.48	90.92	
5,529.90				09/13/92	92.43	90.87	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,620.77	5,622.33	1.56				123.6
5,529.92				12/09/92	92.41	90.85	
5,530.25				03/24/93	92.08	90.52	
5,530.20				06/08/93	92.13	90.57	
5,530.19				09/22/93	92.14	90.58	
5,529.75				12/14/93	92.58	91.02	
5,530.98				03/24/94	91.35	89.79	
5,531.35				06/15/94	90.98	89.42	
5,531.62				08/18/94	90.71	89.15	
5,532.58				12/13/94	89.75	88.19	
5,533.42				03/16/95	88.91	87.35	
5,534.70				06/27/95	87.63	86.07	
5,535.44				09/20/95	86.89	85.33	
5,537.16				12/11/95	85.17	83.61	
5,538.37				03/28/96	83.96	82.40	
5,539.10				06/07/96	83.23	81.67	
5,539.13				09/16/96	83.20	81.64	
5,542.29				03/20/97	80.04	78.48	
5,551.58				04/07/99	70.75	69.19	
5,552.08				05/11/99	70.25	68.69	
5,552.83				07/06/99	69.50	67.94	
5,553.47				09/28/99	68.86	67.30	
5,554.63				01/03/00	67.70	66.14	
5,555.13				04/04/00	67.20	65.64	
5,555.73				05/02/00	66.60	65.04	
5,556.03				05/11/00	66.30	64.74	
5,555.73				05/15/00	66.60	65.04	
5,555.98				05/25/00	66.35	64.79	
5,556.05				06/09/00	66.28	64.72	
5,556.18				06/16/00	66.15	64.59	
5,556.05				06/26/00	66.28	64.72	
5,556.15				07/06/00	66.18	64.62	
5,556.18				07/13/00	66.15	64.59	
5,556.17				07/18/00	66.16	64.60	
5,556.26				07/25/00	66.07	64.51	
5,556.35				08/02/00	65.98	64.42	
5,556.38				08/09/00	65.95	64.39	
5,556.39				08/15/00	65.94	64.38	
5,556.57				08/31/00	65.76	64.20	
5,556.68				09/08/00	65.65	64.09	
5,556.73				09/13/00	65.60	64.04	
5,556.82				09/20/00	65.51	63.95	
5,556.84				09/29/00	65.49	63.93	
5,556.81				10/05/00	65.52	63.96	
				5.5 T	(5)(3) (3 -7) 5- 7	35 7	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,620.77	5,622.33	1.56				123.6
5,556.89				10/12/00	65.44	63.88	
5,556.98				10/19/00	65.35	63.79	
5,557.01				10/23/00	65.32	63.76	
5,557.14				11/09/00	65.19	63.63	
5,557.17				11/14/00	65.16	63.60	
5,556.95				11/21/00	65.38	63.82	
5,557.08				11/30/00	65.25	63.69	
5,557.55				12/07/00	64.78	63.22	
5,557.66				01/14/01	64.67	63.11	
5,557.78				02/09/01	64.55	62.99	
5,558.28				03/29/01	64.05	62.49	
5,558.23				04/30/01	64.10	62.54	
5,558.31				05/31/01	64.02	62.46	
5,558.49				06/22/01	63.84	62.28	
5,558.66				07/10/01	63.67	62.11	
5,559.01				08/20/01	63.32	61.76	
5,559.24				09/19/01	63.09	61.53	
5,559.26				10/02/01	63.07	61.51	
5,559.27				11/08/01	63.06	61.50	
5,559.77				12/03/01	62.56	61.00	
5,559.78				01/03/02	62.55	60.99	
5,559.96				02/06/02	62.37	60.81	
5,560.16				03/26/02	62.17	60.61	
5,560.28				04/09/02	62.05	60.49	
5,560.76				05/23/02	61.57	60.01	
5,560.58				06/05/02	61.75	60.19	
5,560.43				07/08/02	61.90	60.34	
5,560.44				08/23/02	61.89	60.33	
5,560.71				09/11/02	61.62	60.06	
5,560.89				10/23/02	61.44	59.88	
5,557.86				11/22/02	64.47	62.91	
5,561.10				12/03/02	61.23	59.67	
5,561.39				01/09/03	60.94	59.38	
5,561.41				02/12/03	60.92	59.36	
5,561.93				03/26/03	60.40	58.84	
5,561.85				04/02/03	60.48	58.92	
5,536.62				05/01/03	85.71	84.15	
5,528.56				06/09/03	93.77	92.21	
5,535.28				07/07/03	87.05	85.49	
5,534.44				08/04/03	87.89	86.33	
5,537.10				09/11/03	85.23	83.67	
5,539.96				10/02/03	82.37	80.81	
5,535.91				11/07/03	86.42	84.86	
,							

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,620.77	5,622.33	1.56				123.6
5,550.70				12/03/03	71.63	70.07	-
5,557.58				01/15/04	64.75	63.19	
5,558.80				02/10/04	63.53	61.97	
5,560.08				03/28/04	62.25	60.69	
5,560.55				04/12/04	61.78	60.22	
5,561.06				05/13/04	61.27	59.71	
5,561.48				06/18/04	60.85	59.29	
5,561.86				07/28/04	60.47	58.91	
5,529.17				08/30/04	93.16	91.60	
5,536.55				09/16/04	85.78	84.22	
5,529.00				10/11/04	93.33	91.77	
5,541.55				11/16/04	80.78	79.22	
5,541.12				12/22/04	81.21	79.65	
5,540.59				01/18/05	81.74	80.18	
5,542.85				02/28/05	79.48	77.92	
5,537.91				03/15/05	84.42	82.86	
5,548.67				04/26/05	73.66	72.10	
5,549.53				05/24/05	72.80	71.24	
5,544.36				06/30/05	77.97	76.41	
5,545.16				07/29/05	77.17	75.61	
5,544.67				09/12/05	77.66	76.10	
5,541.28				09/27/05	81.05	79.49	
5,536.96				12/07/05	85.37	83.81	
5,546.49				03/08/06	75.84	74.28	
5,546.15				06/13/06	76.18	74.62	
5,545.15				07/18/06	77.18	75.62	
5,545.91				11/17/06	76.42	74.86	
5,545.90				02/27/07	76.43	74.87	
5,548.16				05/02/07	74.17	72.61	
5,547.20				08/13/07	75.13	73.57	
5,547.20				10/10/07	75.13	73.57	
5,547.79				03/26/08	74.54	72.98	
5,545.09				06/25/08	77.24	75.68	
5,550.36				08/26/08	71.97	70.41	
5,550.39				10/14/08	71.94	70.38	
5,542.25				03/03/09	80.08	78.52	
5,542.25				06/24/09	80.08	78.52	
5,550.19				09/10/09	72.14	70.58	
5,550.94				12/11/09	71.39	69.83	
5,546.08				03/11/10	76.25	74.69	
5,550.98				05/11/10	71.35	69.79	
5,548.33				09/29/10	74.00	72.44	
5,551.01			£.	12/21/10	71.32	69.76	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
F 547 00	5,620.77	5,622.33	1.56	00/00/11	75.00	70.77	123.6
5,547.00				02/28/11	75.33	73.77	
5,557.54				06/21/11	64.79	63.23	
5,551.14				09/20/11	71.19	69.63	
5,550.32				12/21/11	72.01	70.45	
5,551.22				03/27/12	71.11	69.55	
5,551.29				06/28/12	71.04	69.48	
5,550.29				09/27/12	72.04	70.48	
5,549.31				12/28/12	73.02	71.46	
5,552.30				03/28/13	70.03	68.47	
5,550.18				06/27/13	72.15	70.59	
5,552.55				09/27/13	69.78	68.22	
5,553.23				12/20/13	69.10	67.54	
5,551.91				03/27/14	70.42	68.86	

		, , , , ,	TITLES TITLE	I TOME	Totalon		
					Total or	TD - 4 - 1	
**7		Measuring			Measured	Total	TD ()
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
Z	5,620.77	5,618.58	1.02				111.04
5,537.23				11/08/99	81.35	80.33	
5,537.38				11/09/99	81.20	80.18	
5,537.48				01/02/00	81.10	80.08	
5,537.48				01/10/00	81.10	80.08	
5,537.23				01/17/00	81.35	80.33	
5,537.28				01/24/00	81.30	80.28	
5,537.28				02/01/00	81.30	80.28	
5,537.18				02/07/00	81.40	80.38	
5,537.48				02/14/00	81.10	80.08	
5,537.48				02/23/00	81.10	80.08	
5,537.58				03/01/00	81.00	79.98	
5,537.68				03/08/00	80.90	79.88	
5,537.98				03/15/00	80.60	79.58	
5,537.68				03/20/00	80.90	79.88	
5,537.68				03/29/00	80.90	79.88	
5,537.43				04/04/00	81.15	80.13	
5,537.18				04/13/00	81.40	80.38	
5,537.48				04/21/00	81.10	80.08	
5,537.68				04/28/00	80.90	79.88	
5,537.58				05/01/00	81.00	79.98	
5,537.88				05/11/00	80.70	79.68	
5,537.58				05/15/00	81.00	79.98	
5,537.88				05/25/00	80.70	79.68	
5,537.88				06/09/00	80.70	79.68	
5,537.90				06/16/00	80.68	79.66	
5,537.88				06/26/00	80.70	79.68	
5,538.10				07/06/00	80.48	79.46	
5,538.10				07/13/00	80.54	79.52	
5,538.04				07/18/00	80.42	79.40	
5,538.42				07/18/00		79.40	
					80.16		
5,538.56				08/02/00 08/09/00	80.02	79.00	
5,538.68					79.90	78.88	
5,538.66				08/15/00	79.92	78.90	
5,538.33				08/31/00	80.25	79.23	
5,539.18				09/01/00	79.40	78.38	
5,539.12				09/08/00	79.46	78.44	
5,539.34				09/13/00	79.24	78.22	
5,539.50				09/20/00	79.08	78.06	
5,539.69				10/05/00	78.89	77.87	
5,540.33				11/09/00	78.25	77.23	
5,540.74				12/06/00	77.84	76.82	
5,542.39				01/14/01	76.19	75.17	
5,543.69				02/02/01	74.89	73.87	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
Z	5,620.77	5,618.58	1.02			· ·	111.04
5,544.96				03/29/01	73.62	72.60	
5,545.45				04/30/01	73.13	72.11	
5,545.89				05/31/01	72.69	71.67	
5,546.19				06/21/01	72.39	71.37	
5,546.50				07/10/01	72.08	71.06	
5,547.18				08/20/01	71.40	70.38	
5,547.59				09/19/01	70.99	69.97	
5,547.84				10/02/01	70.74	69.72	
5,548.12				11/08/01	70.46	69.44	
5,548.65				12/03/01	69.93	68.91	
5,548.87				01/03/02	69.71	68.69	
5,549.37				02/06/02	69.21	68.19	
5,550.00				03/26/02	68.58	67.56	
5,550.22				04/09/02	68.36	67.34	
5,550.81				05/23/02	67.77	66.75	
5,550.79				06/05/02	67.79	66.77	
5,551.08				07/08/02	67.50	66.48	
5,551.54				08/23/02	67.04	66.02	
5,551.79				09/11/02	66.79	65.77	
5,552.19				10/23/02	66.39	65.37	
5,552.27				11/22/02	66.31	65.29	
5,552.48				12/03/02	66.10	65.08	
5,552.74				01/09/03	65.84	64.82	
5,552.92				02/12/03	65.66	64.64	
5,553.40				03/26/03	65.18	64.16	
5,553.48				04/02/03	65.10	64.08	
5,552.32				05/01/03	66.26	65.24	
5,550.53				06/09/03	68.05	67.03	
5,550.09				07/07/03	68.49	67.47	
5,549.64				08/04/03	68.94	67.92	
5,549.31				09/11/03	69.27	68.25	
5,549.58				10/02/03	69.00	67.98	
5,549.50				11/07/03	69.08	68.06	
5,550.07				12/03/03	68.51	67.49	
5,551.86				01/15/04	66.72	65.70	
5,552.57				02/10/04	66.01	64.99	
5,553.63				03/28/04	64.95	63.93	
5,554.04				04/12/04	64.54	63.52	
5,554.60				05/13/04	63.98	62.96	
5,556.28				06/18/04	62.30	61.28	
5,556.61				07/28/04	61.97	60.95	
5,554.21				08/30/04	64.37	63.35	
5,553.49				09/16/04	65.09	64.07	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
Z	5,620.77	5,618.58	1.02				111.04
5,552.53				10/11/04	66.05	65.03	
5,552.42				11/16/04	66.16	65.14	
5,552.46				12/22/04	66,12	65.10	
5,552.07				01/18/05	66.51	65.49	
5,552.21				02/28/05	66.37	65.35	
5,552.26				03/15/05	66.32	65.30	
5,552.30				04/26/05	66.28	65.26	
5,552.25				05/24/05	66.33	65.31	
5,552.22				06/30/05	66.36	65.34	
5,552.15				07/29/05	66.43	65.41	
5,552.47				09/12/05	66.11	65.09	
5,552.50				12/07/05	66.08	65.06	
5,552.96				03/08/06	65.62	64.60	
5,553.23				06/14/06	65.35	64.33	
5,557.20				07/18/06	61.38	60.36	
5,553.32				11/07/06	65.26	64.24	
5,554.35				02/27/07	64.23	63.21	
5,554.07				05/02/07	64.51	63.49	
5,554.07				08/14/07	64.51	63.49	
5,553.88				10/10/07	64.70	63.68	
5,555.73				03/26/08	62.85	61.83	
5,556.60				06/24/08	61.98	60.96	
5,556.83				08/26/08	61.75	60.73	
5,556.87				10/14/08	61.71	60.69	
5,556.90				03/10/09	61.68	60.66	
5,556.91				06/24/09	61.67	60.65	
5,556.61				09/10/09	61.97	60.95	
5,556.78				12/11/09	61.8	60.78	
5,556.75				03/11/10	61.83	60.81	
5,556.19				05/11/10	62.39	61.37	
5,555.26				09/29/10	63.32	62.30	
5,554.66				12/21/10	63.92	62.90	
5,554.74				02/28/11	63.84	62.82	
5,554.57				06/21/11	64.01	62.99	
5,554.13				09/20/11	64.45	63.43	
5,554.54				12/21/11	64.04	63.02	
5,553.64				03/27/12	64.94	63.92	
5,553.66				06/28/12	64.92	63.90	
5,553.73				09/27/12	64.85	63.83	
5,553.59				12/28/12	64.99	63.97	
5,554.73				03/28/13	63.85	62.83	
5,554.44				06/27/13	64.14	63.12	
5,554.37				09/27/13	64.21	63.19	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
z	5,620.77	5,618.58	1.02				111.04
5,553.92				12/20/13	64.66	63.64	
0,000.00							

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.10	5,624.72	1.62				121.125
5,548.57				11/08/99	76.15	74.53	
5,548.57				11/09/99	76.15	74.53	
5,548.32				01/02/00	76.40	74.78	
5,548.52				01/10/00	76.20	74.58	
5,548.32				01/17/00	76.40	74.78	
5,548.72				01/24/00	76.00	74.38	
5,548.62				02/01/00	76.10	74.48	
5,548.62				02/07/00	76.10	74.48	
5,549.02				02/14/00	75.70	74.08	
5,549.12				02/23/00	75.60	73.98	
5,549.22				03/01/00	75.50	73.88	
5,549.32				03/08/00	75.40	73.78	
5,549.22				03/15/00	75.50	73.88	
5,549.92				03/20/00	74.80	73.18	
5,549.72				03/29/00	75.00	73.38	
5,549.42				04/04/00	75.30	73.68	
5,549.52				04/13/00	75.20	73.58	
5,549.72				04/21/00	75.00	73.38	
5,549.82				04/28/00	74.90	73.28	
5,549.82				05/01/00	74.90	73.28	
5,550.12				05/11/00	74.60	72.98	
5,549.82				05/15/00	74.90	73.28	
5,550.12				05/25/00	74.60	72.98	
5,550.12				06/09/00	74.60	72.98	
5,550.22				06/16/00	74.50	72.88	
5,550.07				06/26/00	74.65	73.03	
5,550.17				07/06/00	74.55	72.93	
5,550.17				07/13/00	74.55	72.93	
5,550.18				07/18/00	74.54	72.92	
5,550.33				07/27/00	74.39	72.77	
5,550.38				08/02/00	74.34	72.72	
5,550.40				08/09/00	74.32	72.70	
5,550.42				08/15/00	74.30	72.68	
5,550.54				08/31/00	74.18	72.56	
5,550.87				09/08/00	73.85	72.23	
5,550.97				09/13/00	73.75	72.13	
5,551.04				09/20/00	73.68	72.06	
5,545.83				10/05/00	78.89	77.27	
5,546.47				11/09/00	78.25	76.63	
5,546.88				12/06/00	77.84	76.22	
5,552.18				01/26/01	72.54	70.92	
5,552.20				02/02/01	72.52	70.90	
5,551.10				03/29/01	73.62	72.00	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.10	5,624.72	1.62	Maria Maria			121.125
5,551.59				04/30/01	73.13	71.51	
5,552.03				05/31/01	72.69	71.07	
5,552.33				06/21/01	72.39	70.77	
5,552.64				07/10/01	72.08	70.46	
5,553.32				08/20/01	71.40	69.78	
5,553.73				09/19/01	70.99	69.37	
5,553.98				10/02/01	70.74	69.12	
5,554.14				11/08/01	70.58	68.96	
5,554.79				12/03/01	69.93	68.31	
5,554.74				01/03/02	69.98	68.36	
5,554.91				02/06/02	69.81	68.19	
5,555.15				03/26/02	69.57	67.95	
5,555.39				04/09/02	69.33	67.71	
5,555.73				05/23/02	68.99	67.37	
5,555.79				06/05/02	68.93	67.31	
5,555.91				07/08/02	68.81	67.19	
5,556.04				08/23/02	68.68	67.06	
5,556.25				09/11/02	68.47	66.85	
5,556.72				10/23/02	68.00	66.38	
5,556.42				11/22/02	68.30	66.68	
5,557.01				12/03/02	67.71	66.09	
5,557.20				01/09/03	67.52	65.90	
5,557.35				02/12/03	67.37	65.75	
5,557.83				03/26/03	66.89	65.27	
5,557.87				04/02/03	66.85	65.23	
5,553.71				05/01/03	71.01	69.39	
5,548.98				06/09/03	75.74	74.12	
5,548.14				07/07/03	76.58	74.96	
5,547.75				08/04/03	76.97	75.35	
5,547.22				09/11/03	77.50	75.88	
5,547.68				10/02/03	77.04	75.42	
5,547.52				11/07/03	77.20	75.58	
5,548.29				12/03/03	76.43	74.81	
5,554.00				01/15/04	70.72	69.10	
5,555.46				02/10/04	69.26	67.64	
5,556.90				03/28/04	67.82	66.20	
5,557.49				04/12/04	67.23	65.61	
5,558.07				05/13/04	66.65	65.03	
5,558.19				06/18/04	66.53	64.91	
5,559.00				07/28/04	65.72	64.10	
5,554.26				08/30/04	70.46	68.84	
5,551.97				09/16/04	72.75	71.13	
5,549.65				10/11/04	75.07	73.45	
-,					. =		

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.10	5,624.72	1.62				121.125
5,549.89				11/16/04	74.83	73.21	
5,550.37				12/22/04	74.35	72.73	
5,549.95				01/18/05	74.77	73.15	
5,550.09				02/28/05	74.63	73.01	
5,550.13				03/15/05	74.59	72.97	
5,550.18				04/26/05	74.54	72.92	
5,550.32				05/24/05	74.40	72.78	
5,550.21				06/30/05	74.51	72.89	
5,550.11				07/29/05	74.61	72.99	
5,550.33				09/12/05	74.39	72.77	
5,550.29				12/07/05	74.43	72.81	
5,551.30				03/08/06	73.42	71.80	
5,551.42				06/14/06	73.3	71.68	
5,550.52				07/18/06	74.20	72.58	
5550.52				11/07/06	74.20	72.58	
5552.89				02/27/07	71.83	70.21	
5,552.06				05/02/07	72.66	71.04	
5,552.02				08/14/07	72.7	71.08	
5,552.20				10/10/07	72.52	70.90	
5,554.58				03/26/08	70.14	68.52	
5,555.23				06/24/08	69.49	67.87	
5,555.29				08/26/08	69.43	67.81	
5,555.43				10/14/08	69.29	67.67	
5,555.73				03/10/09	68.99	67.37	
5,556.25				06/24/09	68.47	66.85	
5,555.94				09/10/09	68.78	67.16	
5,556.53				12/11/09	68.19	66.57	
5,557.87				03/11/10	66.85	65.23	
5,557.63				05/11/10	67.09	65.47	
5,557.24				09/29/10	67.48	65.86	
5,557.00				12/21/10	67.72	66.10	
5,557.61				02/28/11	67.11	65.49	
5,557.58				06/21/11	67.14	65.52	
5,557.46				09/20/11	67.26	65.64	
5,557.84				12/21/11	66.88	65.26	
5,557.86				03/27/12	66.86	65.24	
5,557.87				06/28/12	66.85	65.23	
5,557.46				09/27/12	67.26	65.64	
5,557.82				12/28/12	66.9	65.28	
5,559.39				03/28/13	65.33	63.71	
5,559.21				06/27/13	65.51	63.89	
5,559.26				09/27/13	65.46	63.84	
5,559.27				12/20/13	65.45	63.83	

					Total or		
Water Elevation (z)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,623.10	5,624.72	1.62				121.125
5,558.92				03/27/14	65.8	64.18	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Total Depth Of Well
	5,631.21	5,632.23	1.02				141
5,565.78				11/29/99	66.45	65.43	
5,566.93				01/02/00	65.30	64.28	
5,567.03				01/10/00	65.20	64.18	
5,566.83				01/17/00	65.40	64.38	
5,567.13				01/24/00	65.10	64.08	
5,567.33				02/01/00	64.90	63.88	
5,567.13				02/07/00	65.10	64.08	
5,567.43				02/14/00	64.80	63.78	
5,567.63				02/23/00	64.60	63.58	
5,567.73				03/01/00	64.50	63.48	
5,567.83				03/08/00	64.40	63.38	
5,567.70				03/15/00	64.53	63.51	
5,568.03				03/20/00	64.20	63.18	
5,567.93				03/29/00	64.30	63.28	
5,567.63				04/04/00	64.60	63.58	
5,567.83				04/13/00	64.40	63.38	
5,568.03				04/21/00	64.20	63.18	
5,568.23				04/28/00	64.00	62.98	
5,568.13				05/01/00	64.10	63.08	
5,568.53				05/11/00	63.70	62.68	
5,568.23				05/15/00	64.00	62.98	
5,568.53				05/25/00	63.70	62.68	
5,568.61				06/09/00	63.62	62.60	
5,568.69				06/16/00	63.54	62.52	
5,568.45				06/26/00	63.78	62.76	
5,568.61				07/06/00	63.62	62.60	
5,568.61				07/06/00	63.62	62.60	
5,568.49				07/13/00	63.74	62.72	
5,568.55				07/18/00	63.68	62.66	
5,568.65				07/27/00	63.58	62.56	
5,568.73				08/02/00	63.50	62.48	
5,568.77				08/09/00	63.46	62.44	
5,568.76				08/16/00	63.47	62.45	
5,568.95				08/31/00	63.28	62.26	
5,568.49				09/08/00	63.74	62.72	
5,568.67				09/13/00	63.56	62.54	
5,568.96				09/20/00	63.27	62.25	
5,568.93				10/05/00	63.3	62.28	
5,569.34				11/09/00	62.89	61.87	
5,568.79				12/06/00	63.44	62.42	
5,569.11				01/03/01	63.12	62.10	
5,569.75				02/09/01	62.48	61.46	
5,570.34				03/28/01	61.89	60.87	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Total Depth Of Well
	5,631.21	5,632.23	1.02				141
5,570.61				04/30/01	61.62	60.60	
5,570.70				05/31/01	61.53	60.51	
5,570.88				06/21/01	61.35	60.33	
5,571.02				07/10/01	61.21	60.19	
5,571.70				08/20/01	60.53	59.51	
5,572.12				09/19/01	60.11	59.09	
5,572.08				10/02/01	60.15	59.13	
5,572.78				11/08/01	59.45	58.43	
5,573.27				12/03/01	58.96	57.94	
5,573.47				01/03/02	58.76	57.74	
5,573.93				02/06/02	58.30	57.28	
5,574.75				03/26/02	57.48	56.46	
5,574.26				04/09/02	57.97	56.95	
5,575.39				05/23/02	56.84	55.82	
5,574.84				06/05/02	57.39	56.37	
5,575.33				07/08/02	56.90	55.88	
5,575.79				08/23/02	56.44	55.42	
5,576.08				09/11/02	56.15	55.13	
5,576.30				10/23/02	55.93	54.91	
5,576.35				11/22/02	55.88	54.86	
5,576.54				12/03/02	55.69	54.67	
5,576.96				01/09/03	55.27	54.25	
5,577.11				02/12/03	55.12	54.10	
5,577.61				03/26/03	54.62	53.60	
5,572.80				04/02/03	59.43	58.41	
5,577.89				05/01/03	54.34	53.32	
5,577.91				06/09/03	54.32	53.30	
5,577.53				07/07/03	54.70	53.68	
5,577.50				08/04/03	54.73	53.71	
5,577.71				09/11/03	54.52	53.50	
5,577.31				10/02/03	54.92	53.90	
5,577.33				11/07/03	54.90	53.88	
5,577.34				12/03/03	54.89	53.87	
5,578.24				01/15/04	53.99	52.97	
5,578.38				02/10/04	53.85	52.83	
5,578.69				03/28/04	53.54	52.52	
5,579.15				04/12/04	53.08	52.06	
5,579.47				05/13/04	52.76	51.74	
5,579.53				06/18/04	52.70	51.68	
5,580.17				07/28/04	52.06	51.04	
5,580.20				08/30/04	52.03	51.01	
5,580.26				09/16/04	51.97	50.95	
5,580.12				10/11/04	52.11	51.09	
				-courses was 2500 MW 550	2004 CAR CADUSON	200 may 200 mg 2	

	1 ** 4-3	
	Total or	
Measuring M.	Measured Total	4,
Water Land Point I	Depth to Depth to	
Elevation Surface Elevation Length Of Date Of	Water Water	
(z) (LSD) (MP) Riser (L) Monitoring (I	blw.MP) (blw.LSD) Total Depth Of Well	1
5,631.21 5,632.23 1.02	141	_
5,565.78 11/29/99	66.45 65.43	7
5,566.93 01/02/00	65.30 64.28	
5,567.03 01/10/00	65.20 64.18	
5,566.83 01/17/00	65.40 64.38	
5,567.13 01/24/00	65.10 64.08	
5,567.33 02/01/00	64.90 63.88	
5,567.13 02/07/00	65.10 64.08	
5,567.43 02/14/00	64.80 63.78	
5,567.63 02/23/00	64.60 63.58	
5,567.73 03/01/00	64.50 63.48	
5,567.83 03/08/00	64.40 63.38	
5,567.70 03/15/00	64.53 63.51	
5,568.03 03/20/00	64.20 63.18	
5,567.93 03/29/00	64.30 63.28	
5,567.63 04/04/00	64.60 63.58	
5,567.83 04/13/00	64.40 63.38	
5,568.03 04/21/00	64.20 63.18	
5,568.23 04/28/00	64.00 62.98	
5,568.13 05/01/00	64.10 63.08	
5,568.53 05/11/00	63.70 62.68	
5,568.23 05/15/00	64.00 62.98	
5,568.53 05/25/00	63.70 62.68	
5,568.61 06/09/00	63.62 62.60	
5,568.69 06/16/00	63.54 62.52	
5,568.45 06/26/00	63.78 62.76	
5,568.61 07/06/00	63.62 62.60	
5,568.61 07/06/00	63.62 62.60	
5,568.49 07/13/00	63.74 62.72	
5,568.55 07/18/00	63.68 62.66	
5,568.65 07/27/00	63.58 62.56	
5,568.73 08/02/00	63.50 62.48	
5,568.77 08/09/00	63.46 62.44	
5,568.76 08/16/00	63.47 62.45	
5,568.95 08/31/00	63.28 62.26	
5,568.49 09/08/00	63.74 62.72	
5,568.67 09/13/00	63.56 62.54	
5,568.96 09/20/00	63.27 62.25	
5,568.93	63.3 62.28	
5,569.34 11/09/00	62.89 61.87	
5,568.79 12/06/00	63.44 62.42	
5,569.11 01/03/01	63.12 62.10	
5,569.75 02/09/01	62.48 61.46	
5,570.34 03/28/01	61.89 60.87	

Total or

Water Elevation	Land Surface	Measuring Point Elevation	Length Of	Date Of	Measured Depth to Water	Total Depth to Water	
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Total Depth Of Well
	5,631.21	5,632.23	1.02				141
5,570.61				04/30/01	61.62	60.60	
5,570.70				05/31/01	61.53	60.51	
5,570.88				06/2.1/01	61.35	60.33	
5,571.02				07/10/01	61.21	60.19	
5,571.70				08/20/01	60.53	59.51	
5,572.12				09/19/01	60.11	59.09	
5,572.08				10/02/01	60.15	59.13	
5,572.78				11/08/01	59.45	58.43	
5,573.27				12/03/01	58.96	57.94	
5,573.47				01/03/02	58.76	57.74	
5,573.93				02/06/02	58.30	57.28	
5,574.75				03/26/02	57.48	56.46	
5,574.26				04/09/02	57.97	56.95	
5,575.39				05/23/02	56.84	55.82	
5,574.84				06/05/02	57.39	56.37	
5,575.33				07/08/02	56.90	55.88	
5,575.79				08/23/02	56.44	55.42	
5,576.08				09/11/02	56.15	55.13	
5,576.30				10/23/02	55.93	54.91	
5,576.35				11/22/02	55.88	54.86	
5,576.54				12/03/02	55.69	54.67	
5,576.96				01/09/03	55.27	54.25	
5,577.11				02/12/03	55.12	54.10	
5,577.61				03/26/03	54.62	53.60	
5,572.80				04/02/03	59.43	58.41	
5,577.89				05/01/03	54.34	53.32	
5,577.91 5,577.53				06/09/03 07/07/03	54.32 54.70	53.30 53.68	
A 1421 A 177 A					54.73	53.71	
5,577.50				08/04/03 09/11/03	54.75 54.52	53.50	
5,577.71 5,577.31				10/02/03	54.92	53.90	
				11/07/03	54.90	53.88	
5,577.33				12/03/03	54.89	53.87	
5,577.34 5,578.24				01/15/04	53.99	52.97	
5,578.24				02/10/04	53.85	52.83	
5,578.69				03/28/04	53.54	52.52	
5,579.15				03/28/04	53.08	52.06	
5,579.13				05/13/04	52.76	51.74	
5,579.53				05/15/04	52.70	51.74	
5,580.17				07/28/04	52.76	51.04	
5,580.17				08/30/04	52.03	51.04	
5,580.26				09/16/04	51.97	50.95	
5,580.26				10/11/04	52.11	51.09	
3,300.12				10/11/04	J4.11	31.03	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Total Depth Of Well
	5,631.21	5,632.23	1.02				141
5,579.93				11/16/04	52.30	51.28	
5,580.07				12/22/04	52.16	51.14	
5,579.80				01/18/05	52.43	51.41	
5,580.35				02/28/05	51.88	50.86	
5,580.57				03/15/05	51.66	50.64	
5,580.86				04/26/05	51.37	50.35	
5,581.20				05/24/05	51.03	50.01	
5,581.51				06/30/05	50.72	49.70	
5,581.55				07/29/05	50.68	49.66	
5,581.68				09/12/05	50.55	49.53	
5,581.83				12/07/05	50.4	49.38	
5,564.92				03/08/06	67.31	66.29	
5,582.73				06/13/06	49.50	48.48	
5,582.33				07/18/06	49.90	48.88	
5,582.75				11/07/06	49.48	48.46	
5583.35				02/27/07	48.88	47.86	
5,559.57				05/02/07	72.66	71.64	
5,583.29				08/14/07	48.94	47.92	
5,583.49				10/10/07	48.74	47.72	
5,584.95				03/26/08	47.28	46.26	
5,584.59				06/24/08	47.64	46.62	
5,584.55				08/26/08	47.68	46.66	
5,584.03				10/14/08	48.2	47.18	
5,583.64				03/03/09	48.59	47.57	
5,587.34				06/24/09	44.89	43.87	
5,582.90				09/10/09	49.33	48.31	
5,583.27				12/11/09	48.96	47.94	
5,583.63				03/11/10	48.6	47.58	
5,583.82				05/11/10	48.41	47.39	
5,583.51				09/29/10	48.72	47.70	
5,582.86				12/21/10	49.37	48.35	
5,582.60				02/28/11	49.63	48.61	
5,590.00				06/21/11	42.23	41.21	
5,582.70				09/20/11	49.53	48.51	
5,583.05				12/21/11	49.18	48.16	
5,581.93				03/27/12	50.30	49.28	
5,582.03				06/28/12	50.20	49.18	
5,582.08				09/27/12	50.15	49.13	
5,581.94				12/28/12	50.29	49.27	
5,581.52				03/28/13	50.71	49.69	
5,580.88				06/27/13	51.35	50.33	
5,580.58				09/27/13	51.65	50.63	
5,580.38				12/20/13	51.85	50.83	

Total	or
Total	or

Water Elevation	Land Surface	Measuring Point Elevation	Length Of	Date Of	Measured Depth to Water	Total Depth to Water	
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Total Depth Of Well
	5,631.21	5,632.23	1.02				141
5,579.62				03/27/14	52.61	51.59	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,612.301	5,613.485	1.184				114.5
5,512.145				05/25/00	101.34	100.16	
5,518.985				06/09/00	94.50	93.32	
5,512.145				06/16/00	101.34	100.16	
5,517.465				06/26/00	96.02	94.84	
5,520.145				07/06/00	93.34	92.16	
5,521.435				07/13/00	92.05	90.87	
5,522.005				07/18/00	91.48	90.30	
5,522.945				07/27/00	90.54	89.36	
5,523.485				08/02/00	90.00	88.82	
5,523.845				08/09/00	89.64	88.46	
5,523.885				08/15/00	89.60	88.42	
5,524.555				09/01/00	88.93	87.75	
5,513.235				09/08/00	100.25	99.07	
5,516.665				09/13/00	96.82	95.64	
5,519.085				09/20/00	94.40	93.22	
5,522.165				10/05/00	91.32	90.14	
5,524.665				11/09/00	88.82	87.64	
5,518.545				12/06/00	94.94	93.76	
5,527.695				01/03/01	85.79	84.61	
5,529.085				02/09/01	84.40	83.22	
5,529.535				03/27/01	83.95	82.77	
5,530.235				04/30/01	83.25	82.07	
5,530.265				05/31/01	83.22	82.04	
5,534.405				06/22/01	79.08	77.90	
5,533.145				07/10/01	80.34	79.16	
5,534.035				08/20/01	79.45	78.27	
5,534.465				09/19/01	79.02	77.84	
5,533.285				10/02/01	80.20	79.02	
5,533.865				11/08/01	79.62	78.44	
5,534.275				12/03/01	79.21	78.03	
5,534.715				01/03/02	78.77	77.59	
5,535.435				02/06/02	78.05	76.87	
5,536.445				03/26/02	77.04	75.86	
5,536.405				04/09/02	77.08	75.90	
5,537.335				05/23/02	76.15	74.97	
5,537.325				06/05/02	76.16	74.98	
5,537.975				07/08/02	75.51	74.33	
5,538.825				08/23/02	74.66	73.48	
5,539.275				09/11/02	74.21	73.03	
5,539.765				10/23/02	73.72	72.54	
5,540.205				11/22/02	73.28	72.10	
5,540.295				12/03/02	73.19	72.01	
5,540.795				01/09/03	72.69	71.51	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,612.301	5,613.485	1.184				114.5
5,540.985				02/12/03	72.50	71.32	
5,541.675				03/26/03	71.81	70.63	
5,541.765				04/02/03	71.72	70.54	
5,541.885				05/01/03	71.60	70.42	
5,542.025				06/09/03	71.46	70.28	
5,541.925				07/07/03	71.56	70.38	
5,541.885				08/04/03	71.60	70.42	
5,541.825				09/11/03	71.66	70.48	
5,541.885				10/02/03	71.60	70.42	
5,541.995				11/07/03	71.49	70.31	
5,542.005				12/03/03	71.48	70.30	
5,542.555				01/15/04	70.93	69.75	
5,542.705				02/10/04	70.78	69.60	
5,543.225				03/28/04	70.26	69.08	
5,543.555				04/12/04	69.93	68.75	
5,543.865				05/13/04	69.62	68.44	
5,543.915				06/18/04	69.57	68.39	
5,544.655				07/28/04	68.83	67.65	
5,544.795				08/30/04	68.69	67.51	
5,544.845				09/16/04	68.64	67.46	
5,544.705				10/11/04	68.78	67.60	
5,544.525				11/16/04	68.96	67.78	
5,544.625				12/22/04	68.86	67.68	
5,544.305				01/18/05	69.18	68.00	
5,544.585				02/28/05	68.90	67.72	
5,544.685				03/15/05	68.80	67.62	
5,544.675				04/26/05	68.81	67.63	
5,544.785				05/24/05	68.70	67.52	
5,544.795				06/30/05	68.69	67.51	
5,544.775				07/29/05	68.71	67.53	
5,545.005				09/12/05	68.48	67.30	
5,545.225				12/07/05	68.26	67.08	
5,545.735				03/08/06	67.75	66.57	
5,545.785				06/14/06	67.70	66.52	
5,545.855				07/18/06	67.63	66.45	
5,545.805				11/07/06	67.68	66.50	
5546.675				02/27/07	66.81	65.63	
5,546.535				05/02/07	66.95	65.77	
5,547.155				08/15/07	66.33	65.15	
5,547.215				10/10/07	66.27	65.09	
5,548.305				03/26/08	65.18	64.00	
5,548.865				06/24/08	64.62	63.44	
5,549.235				08/26/08	64.25	63.07	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,612.301	5,613.485	1.184				114.5
5,549.305				10/14/08	64.18	63.00	
5,549.725				03/03/09	63.76	62.58	
5,549.905				06/24/09	63.58	62.40	
5,549.695				09/10/09	63.79	62.61	
5,549.865				12/11/09	63.62	62.44	
5,545.60				03/11/10	67.89	66.71	
5,530.88				05/11/10	82.61	81.43	
5,545.24				09/29/10	68.25	67.07	
5,533.66				12/21/10	79.83	78.65	
5,544.44				02/28/11	69.05	67.87	
5,543.73				06/21/11	69.76	68.58	
5,540.48				09/20/11	73.01	71.83	
5,544.36				12/21/11	69.13	67.95	
5,543.48				03/27/12	70.01	68.83	
5,543.49				06/28/12	70.00	68.82	
5,543.36				09/27/12	70.13	68.95	
5,543.51				12/28/12	69.98	68.80	
5,543.49				03/28/13	70.00	68.82	
5,543.36				06/27/13	70.13	68.95	
5,544.59				09/27/13	68.90	67.72	
5,543.33				12/20/13	70.16	68.98	
5,544.11				03/27/14	69.38	68.20	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
14	5,638.75	5,640.70	1.95			,	121.75
5,579.30				01/02/00	61.40	59.45	
5,579.60				01/10/00	61.10	59.15	
5,579.35				01/17/00	61.35	59.40	
5,579.60				01/24/00	61.10	59.15	
5,579.50				02/01/00	61.20	59.25	
5,579.50				02/07/00	61.20	59.25	
5,579.90				02/14/00	60.80	58.85	
5,579.90				02/23/00	60.80	58.85	
5,580.20				03/01/00	60.50	58.55	
5,580.00				03/08/00	60.70	58.75	
5,580.04				03/15/00	60.66	58.71	
5,580.70				03/20/00	60.00	58.05	
5,580.30				03/29/00	60.40	58.45	
5,580.00				04/04/00	60.70	58.75	
5,580.20				04/13/00	60.50	58.55	
5,580.40				04/21/00	60.30	58.35	
5,580.50				04/28/00	60.20	58.25	
5,580.50				05/01/00	60.20	58.25	
5,580.90				05/11/00	59.80	57.85	
5,580.50				05/15/00	60.20	58.25	
5,580.75				05/25/00	59.95	58.00	
5,580.80				06/09/00	59.90	57.95	
5,580.92				06/16/00	59.78	57.83	
5,580.80				06/26/00	59.90	57.95	
5,580.90				07/06/00	59.80	57.85	
5,581.05				07/13/00	59.65	57.70	
5,580.90				07/18/00	59.80	57.85	
5,581.05				07/27/00	59.65	57.70	
5,581.06				08/02/00	59.64	57.69	
5,581.08				08/09/00	59.62	57.67	
5,581.07				08/16/00	59.63	57.68	
5,581.25				08/31/00	59.45	57.50	
5,581.32				09/08/00	59.38	57.43	
5,581.34				09/13/00	59.36	57.41	
5,581.41				09/20/00	59.29	57.34	
5,581.37				10/05/00	59.33	57.38	
5,581.66				11/09/00	59.04	57.09	
5,581.63				12/06/00	59.07	57.12	
5,581.92				01/03/01	58.78	56.83	
5,582.20				02/09/01	58.50	56.55	
5,582.54				03/28/01	58.16	56.21	
5,582.72				04/30/01	57.98	56.03	
5,582.72				05/31/01	57.98	56.03	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,638.75	5,640.70	1.95		((::::::::::::::::::::::::::::::::::::::	121.75
5,582.81				06/22/01	57.89	55.94	
5,582.92				07/10/01	57.78	55.83	
5,583.17				08/20/01	57.53	55.58	
5,583.28				09/19/01	57.42	55.47	
5,583.36				10/02/01	57.34	55.39	
5,583.49				11/08/01	57.21	55.26	
5,583.84				12/03/01	56.86	54.91	
5,583.79				01/03/02	56.91	54.96	
5,583.96				02/06/02	56.74	54.79	
5,584.39				03/26/02	56.31	54.36	
5,584.12				04/09/02	56.58	54.63	
5,584.55				05/23/02	56.15	54.20	
5,584.42				06/05/02	56.28	54.33	
5,583.65				07/08/02	57.05	55.10	
5,584.90				08/23/02	55.80	53.85	
5,585.02				09/11/02	55.68	53.73	
5,585.20				10/23/02	55.50	53.55	
5,585.15				11/22/02	55.55	53.60	
5,585.42				12/03/02	55.28	53.33	
5,585.65				01/09/03	55.05	53.10	
5,585.65				02/12/03	55.05	53.10	
5,585.92				03/26/03	54.78	52.83	
5,586.22				04/02/03	54.48	52.53	
5,586.01				05/01/03	54.69	52.74	
5,584.81				06/09/03	55.89	53.94	
5,584.34				07/07/03	56.36	54.41	
5,584.40				08/04/03	56.30	54.35	
5,583.88				09/11/03	56.82	54.87	
5,583.57				10/02/03	57.13	55.18	
5,583.39				11/07/03	57.31	55.36	
5,583.97				12/03/03	56.73	54.78	
5,585.28				01/15/04	55.42	53.47	
5,585.50				02/10/04	55.20	53.25	
5,585.87				03/28/04	54.83	52.88	
5,586.20				04/12/04	54.50	52.55	
5,586.45				05/13/04	54.25	52.30	
5,586.50				06/18/04	54.20	52.25	
5,587.13				07/28/04	53.57	51.62	
5,586.22				08/30/04	54.48	52.53	
5,585.69				09/16/04	55.01	53.06	
5,585.17				10/11/04	55.53	53.58	
5,584.64				11/16/04	56.06	54.11	
5,584.77				12/22/04	55.93	53.98	
J,007.77				12/22/07	55,75	55,70	

						Total or		
			Measuring			Measured	Total	
	Water	Land	Point			Depth to	Depth to	Total
	Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
	(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
-		5,638.75	5,640.70	1.95				121.75
	5,584.65				01/18/05	56.05	54.10	
	5,584.98				02/28/05	55.72	53.77	
	5,585.15				03/15/05	55.55	53.60	
	5,586.25				04/26/05	54.45	52.50	
	5,586.79				05/24/05	53.91	51.96	
	5,586.52				06/30/05	54.18	52.23	
	5,586.03				07/29/05	54.67	52.72	
	5,586.05				09/12/05	54.65	52.70	
	5,585.80				12/07/05	54.90	52.95	
	5,587.06				03/08/06	53.64	51.69	
	5,585.90				06/13/06	54.80	52.85	
	5,585.32				07/18/06	55.38	53.43	
	5,585.35				11/07/06	55.35	53.40	
	5585.81				02/27/07	54.89	52.94	
	5,585.20				05/02/07	55.50	53.55	
	5,586.66				08/14/07	54.04	52.09	
	5,586.80				10/10/07	53.90	51.95	
	5,588.48				03/26/08	52.22	50.27	
	5,586.51				06/24/08	54.19	52.24	
	5,586.45				08/26/08	54.25	52.30	
	5,585.40				10/14/08	55.3	53.35	
	5,584.80				03/03/09	55.9	53.95	
	5,584.73				06/24/09	55.97	54.02	
	5,584.36				09/10/09	56.34	54.39	
	5,585.02				12/11/09	55.68	53.73	
	5,585.66				03/11/10	55.04	53.09	
	5,584.86				05/11/10	55.84	53.89	
	5,584.55				09/29/10	56.15	54.20	
	5,584.17				12/21/10	56.53	54.58	
	5,583.55				02/28/11	57.15	55.20	
	5,584.72				06/21/11	55.98	54.03	
	5,584.62				09/20/11	56.08	54.13	
	5,585.04				11/21/11	55.66	53.71	
	5,583.89				03/27/12	56.81	54.86	
	5,583.92				06/28/12	56.78	54.83	
	5,583.89				09/27/12	56.81	54.86	
	5,583.89				12/28/12	56.81	54.86	
	5,582.88				03/28/13	57.82	55.87	
	5,582.05				06/27/13	58.65	56.70	
	5,581.35				09/27/13	59.35	57.40	
	5,580.52				12/20/13	60.18	58.23	
	5,579.44				03/27/14	61.26	59.31	

					Total or		
		Measuring			Measured	Total	Total
Water	Land	Point			Depth to	Depth to	Depth Of
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Well
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
	5,607.33	5,608.78	1.450				98.55
5,522.28				05/25/00	86.50	85.05	
5,521.51				06/09/00	87.27	85.82	
5,522.35				06/16/00	86.43	84.98	
5,522.14				06/26/00	86.64	85.19	
5,522.25				07/06/00	86.53	85.08	
5,522.13				07/13/00	86.65	85.20	
5,522.17				07/18/00	86.61	85.16	
5,522.26				07/25/00	86.52	85.07	
5,522.31				08/02/00	86.47	85.02	
5,522.33				08/09/00	86.45	85.00	
5,522.35				08/15/00	86.43	84.98	
5,522.40				08/31/00	86.38	84.93	
5,522.40				09/08/00	86.38	84.93	
5,522.45				09/13/00	86.33	84.88	
5,522.53				09/20/00	86.25	84.80	
5,522.39				10/05/00	86.39	84.94	
5,522.42				11/09/00	86.36	84.91	
5,522.29				12/06/00	86.49	85.04	
5,522.63				01/03/01	86.15	84.70	
5,522.72				02/09/01	86.06	84.61	
5,522.90				03/26/01	85.88	84.43	
5,522.70				04/30/01	86.08	84.63	
5,522.89				05/31/01	85.89	84.44	
5,522.88				06/20/01	85.90	84.45	
5,522.96				07/10/01	85.82	84.37	
5,523.10				08/20/01	85.68	84.23	
5,523.23				09/19/01	85.55	84.10	
5,523.21				10/02/01	85.57	84.12	
5,523.25				11/08/01	85.53	84.08	
5,523.46				12/03/01	85.32	83.87	
5,523.36				01/03/02	85.42	83.97	
5,523.50				02/06/02	85.28	83.83	
5,523.94				03/26/02	84.84	83.39	
5,523.75				04/09/02	85.03	83.58	
5,524.23				05/23/02	84.55	83.10	
5,523.98				06/05/02	84.80	83.35	
5,524.31				07/08/02	84.47	83.02	
5,524.36				08/23/02	84.42	82.97	
5,524.49				09/11/02	84.29	82.84	
5,524.71				10/23/02	84.07	82.62	
5,524.60				11/22/02	84.18	82.73	
5,524.94				12/03/02	83.84	82.39	
5,525.10				01/09/03	83.68	82.23	

			- 1120000 1121		Total or		
		Measuring			Measured	Total	Total
Water	Land	Point			Depth to	Depth to	Depth Of
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Well
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
(4)	5,607.33	5,608.78	1.450	Montoring	(orminal)	(Ornicos)	98.55
5,525.15	0,007.00	2,0000		02/12/03	83.63	82.18	
5,525.35				03/26/03	83.43	81.98	
5,525.68				04/02/03	83.10	81.65	
5,525.74				05/01/03	83.04	81.59	
5,525.98				06/09/03	82.80	81.35	
5,526.04				07/07/03	82.74	81.29	
5,526.07				08/04/03	82.71	81.26	
5,526.42				09/11/03	82.36	80.91	
5,526.30				10/02/03	82.48	81.03	
5,526.41				11/07/03	82.37	80.92	
5,526.46				12/03/03	82.32	80.87	
5,526.83				01/15/04	81.95	80.50	
5,526.81				02/10/04	81.97	80.52	
5,527.14				03/28/04	81.64	80.19	
5,527.39				04/12/04	81.39	79.94	
5,527.64				05/13/04	81.14	79.69	
5,527.70				06/18/04	81.08	79.63	
5,528.16				07/28/04	80.62	79.17	
5,528.30				08/30/04	80.48	79.03	
5,528.52				09/16/04	80.26	78.81	
5,528.71				10/11/04	80.07	78.62	
5,528.74				11/16/04	80.04	78.59	
5,529.20				12/22/04	79.58	78.13	
5,528.92				01/18/05	79.86	78.41	
5,529.51				02/28/05	79.27	77.82	
5,529.74				03/15/05	79.04	77.59	
5,529.96				04/26/05	78.82	77.37	
5,530.15				05/24/05	78.63	77.18	
5,530.35				06/30/05	78.43	76.98	
5,530.47				07/29/05	78.31	76.86	
5,530.95				09/12/05	77.83	76.38	
5,531.50				12/07/05	77.28	75.83	
5,532.43				03/08/06	76.35	74.90	
5,533.49				06/13/06	75.29	73.84	
5,532.58				07/18/06	76.20	74.75	
5,532.88				11/07/06	75.90	74.45	
5534.09				02/27/07	74.69	73.24	
5,534.04				05/02/07	74.74	73.29	
5,534.43				08/14/07	74.35	72.90	
5,554.54				10/10/07	54.24	52.79	
5,535.40				03/26/08	73.38	71.93	
5,535.55				06/24/08	73.23	71.78	
5,535.90				08/26/08	72.88	71.43	
C. Course T. N. C.				on month about the	7 You take 7 50		

					Total or		
		Measuring			Measured	Total	Total
Water	Land	Point			Depth to	Depth to	Depth Of
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Well
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
	5,607.33	5,608.78	1.450				98.55
5,535.87				10/14/08	72.91	71.46	
5,536.42				03/10/09	72.36	70.91	
5,536.71				06/24/09	72.07	70.62	
5,536.83				09/10/09	71.95	70.50	
5,537.35				12/11/09	71.43	69.98	
5,537.93				03/11/10	70.85	69.40	
5,538.14				05/11/10	70.64	69.19	
5,538.03				09/29/10	70.75	69.30	
5,538.04				12/21/10	70.74	69.29	
5,537.98				02/28/11	70.8	69.35	
5,538.46				06/21/11	70.32	68.87	
5,538.37				09/20/11	70.41	68.96	
5,538.87				12/21/11	69.91	68.46	
5,538.73				03/27/12	70.05	68.60	
5,538.80				06/28/12	69.98	68.53	
5,539.04				09/27/12	69.74	68.29	
5,538.74				12/28/12	70.04	68.59	
5,539.53				03/28/13	69.25	67.80	
5,539.46				06/27/13	69.32	67.87	
5,539.62				09/27/13	69.16	67.71	
5,539.85				12/20/13	68.93	67.48	
5,539.65				03/27/14	69.13	67.68	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total Depth
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Of Well
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
	5,619.87	5,621.07	1.20				119.8
5,552.37				11/29/99	68.70	67.50	
5,553.57				01/02/00	67.50	66.30	
5,553.87				01/10/00	67.20	66.00	
5,553.72				01/17/00	67.35	66.15	
5,553.97				01/24/00	67.10	65.90	
5,553.87				02/01/00	67.20	66.00	
5,553.87				02/07/00	67.20	66.00	
5,554.17				02/14/00	66.90	65.70	
5,554.27				02/23/00	66.80	65.60	
5,554.37				03/01/00	66.70	65.50	
5,554.37				03/08/00	66.70	65.50	
5,554.27				03/15/00	66.80	65.60	
5,554.77				03/20/00	66.30	65.10	
5,554.57				03/29/00	66.50	65.30	
5,554.27				04/04/00	66.80	65.60	
5,554.57				04/13/00	66.50	65.30	
5,554.77				04/21/00	66.30	65.10	
5,554.87				04/28/00	66.20	65.00	
5,554.87				05/01/00	66.20	65.00	
5,555.27				05/11/00	65.80	64.60	
5,554.97				05/15/00	66.10	64.90	
5,555.27				05/25/00	65.80	64.60	
5,555.33				06/09/00	65.74	64.54	
5,555.45				06/16/00	65.62	64.42	
5,555.22				06/26/00	65.85	64.65	
5,555.45				07/06/00	65.62	64.42	
5,555.40				07/13/00	65.67	64.47	
5,555.45				07/18/00	65.62	64.42	
5,555.59				07/27/00	65.48	64.28	
5,555.65				08/02/00	65.42	64.22	
5,555.70				08/09/00	65.37	64.17	
5,555.74				08/16/00	65.33	64.13	
5,555.96				08/31/00	65.11	63.91	
5,555.87				09/08/00	65.20	64.00	
5,555.95				09/13/00	65.12	63.92	
5,556.05				09/20/00	65.02	63.82	
5,556.06				10/05/00	65.01	63.81	
5,556.17				10/12/00	64.90	63.70	
5,556.20				10/19/00	64.87	63.67	
5,556.22				10/23/00	64.85	63.65	
5,556.36				11/09/00	64.71	63.51	
5,556.42				11/14/00	64.65	63.45	
5,556.45				11/30/00	64.62	63.42	

		Measuring			Total or Measured	Total	
Water	Land	Point			Depth to	Depth to	Total Depth
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Of Well
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
	5,619.87	5,621.07	1.20				119.8
5,556.15				12/06/00	64.92	63.72	
5,556.89				01/14/01	64.18	62.98	
5,557.07				02/09/01	64.00	62.80	
5,557.62				03/29/01	63.45	62.25	
5,557.51				04/30/01	63.56	62.36	
5,557.77				05/31/01	63.30	62.10	
5,557.84				06/21/01	63.23	62.03	
5,557.98				07/10/01	63.09	61.89	
5,558.33				08/20/01	62.74	61.54	
5,558.57				09/19/01	62.50	61.30	
5,558.53				10/02/01	62.54	61.34	
5,558.62				11/08/01	62.45	61.25	
5,559.03				12/03/01	62.04	60.84	
5,559.08				01/03/02	61.99	60.79	
5,559.32				02/06/02	61.75	60.55	
5,559.63				03/26/02	61.44	60.24	
5,559.55				04/09/02	61.52	60.32	
5,560.06				05/23/02	61.01	59.81	
5,559.91				06/05/02	61.16	59.96	
5,560.09				07/08/02	60.98	59.78	
5,560.01				08/23/02	61.06	59.86	
5,560.23				09/11/02	60.84	59.64	
5,560.43				10/23/02	60.64	59.44	
5,560.39				11/22/02	60.68	59.48	
5,560.61				12/03/02	60.46	59.26	
5,560.89				01/09/03	60.18	58.98	
5,560.94				02/12/03	60.13	58.93	
5,561.28				03/26/03	59.79	58.59	
5,561.35				04/02/03	59.72	58.52	
5,546.20				05/01/03	74.87	73.67	
5,539.47				06/09/03	81.60	80.40	
5,541.87				07/07/03	79.20	78.00	
5,542.12				08/04/03	78.95	77.75	
5,541.91				09/11/03	79.16	77.96	
5,544.62				10/02/03	76.45	75.25	
5,542.67				11/07/03	78.40	77.20	
5,549.96				12/03/03	71.11	69.91	
5,557.17				01/15/04	63.90	62.70	
5,558.65				02/10/04	62.42	61.22	
5,559.90				03/28/04	61.17	59.97	
5,560.36				04/12/04	60.71	59.51	
5,560.87				05/13/04	60.20	59.00	
5,560.95				06/18/04	60.12	58.92	

Water Elevation	Land Surface	Measuring Point Elevation	Length Of	Date Of Monitoring	Total or Measured Depth to Water	Total Depth to Water	Total Depth Of Well
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
F F (1 (1	5,619.87	5,621.07	1.20	07/00/04	50.42	50.00	119.8
5,561.64				07/28/04	59.43	58.23	
5,543.00				08/30/04	78.07	76.87	
5,541.91				09/16/04	79.16	77.96	
5,540.08				10/11/04	80.99	79.79	
5,546.92				11/16/04	74.15	72.95	
5,546.97				12/22/04	74.10	72.90	
5,546.51				01/18/05	74.56	73.36	
5,546.66				02/28/05	74.41	73.21	
5,546.81				03/15/05	74.26	73.06	
5,548.19				04/26/05	72.88	71.68	
5,547.11				05/24/05	73.96	72.76	
5,546.98				06/30/05	74.09	72.89	
5,546.92				07/29/05	74.15	72.95	
5,547.26				09/12/05	73.81	72.61	
5,547.26				12/07/05	73.81	72.61	
5,548.86				03/08/06	72.21	71.01	
5,548.62				06/13/06	72.45	71.25	
5,550.04				07/18/06	71.03	69.83	
5,548.32				11/07/06	72.75	71.55	
5,550.44				02/27/07	70.63	69.43	
5,549.69				05/02/07	71.38	70.18	
5,549.97				08/14/07	71.10	69.90	
5,550.30				10/10/07	70.77	69.57	
5,551.92				03/26/08	69.15	67.95	
5,552.94				06/24/08	68.13	66.93	
5,552.34				08/26/08	68.73	67.53	
5,552.61				10/14/08	68.46	67.26	
5,552.81				03/10/09	68.26	67.06	
5,553.11				06/24/09	67.96	66.76	
5,552.55				09/10/09	68.52	67.32	
5,553.06				12/11/09	68.01	66.81	
5,554.64				03/11/10	66.43	65.23	
5,554.20				05/11/10	66.87	65.67	
5,553.45				09/29/10	67.62	66.42	
5,553.40				12/21/10	67.67	66.47	
5,553.93				02/28/11	67.14	65.94	
5,553.67				06/21/11	67.4	66.20	
5,553.46				09/20/11	67.61	66.41	
5,553.78				12/21/11	67.29	66.09	
5,553.17				03/27/12	67.90	66.70	
5,553.21				06/28/12	67.86	66.66	
5,552.90				09/27/12	68.17	66.97	
5,553.15				12/28/12	67.92	66.72	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well (blw.LSD)
	5,619.87	5,621.07	1.20				119.8
5,556.23				03/28/13	64.84	63.64	
5,556.04				06/27/13	65.03	63.83	
5,556.09				09/27/13	64.98	63.78	
5,555.80				12/20/13	65.27	64.07	
5,555.40				03/27/14	65.67	64.47	

Water Elevation (VL) Land (LSD) Point (LSD) Length of (MP) (MP) Nate of Major (MP) (Monitoring) Value (WMP) (MM) Total Depth of Water (WMP) Well (WMP)							Total or		
Elevation Surface Chey				Measuring			Measured		
Elevation Clastic Cl		Water	Land	Point			Depth to	Total Depth	Total
(WL) (LSD) (MP) Riser (L) Monitoring (blw.MP) (blw.LSD) Well 5,546.40 5,616.80 5,621.40 4.60 11/26/00 75.00 70.40 5,546.20 01/10/200 75.20 70.60 70.30 70.50 70.50 70.50 5,546.50 70.50 70.50 70.50 70.50 70.50 5,546.50 70.11/10/00 74.80 70.20 70.30 70.30 5,546.50 70.20 70.30 </th <th></th> <th>Elevation</th> <th>Surface</th> <th>Elevation</th> <th>Length Of</th> <th>Date Of</th> <th>Water</th> <th>_</th> <th>Depth Of</th>		Elevation	Surface	Elevation	Length Of	Date Of	Water	_	Depth Of
5,546,40 11/29/99 75,00 70,40 5,546,50 01/02/00 75,20 70,60 5,546,50 01/10/00 74,90 70,30 5,546,60 01/24/00 74,80 70,20 5,546,60 01/24/00 74,90 70,30 5,546,50 02/01/00 74,90 70,30 5,546,90 02/14/00 74,50 69,90 5,546,95 02/23/00 74,45 69,85 5,547,05 03/01/00 74,35 69,75 5,547,05 03/08/00 74,35 69,75 5,547,10 03/15/00 74,30 69,75 5,547,10 03/15/00 74,30 69,75 5,547,40 03/29/00 74,00 69,40 5,547,40 03/29/00 74,00 69,40 5,547,70 04/28/00 73,70 69,10 5,547,70 04/28/00 73,70 69,10 5,547,90 05/10/00 73,50 68,80 5,547,90 06/09/00		(WL)	(LSD)	(MP)	_	Monitoring	(blw.MP)	(blw.LSD)	-
5,546,20 01/02/00 75,20 70,60 5,546,50 01/10/00 74,90 70,30 5,546,60 01/24/00 74,80 70,20 5,546,50 02/01/00 74,90 70,30 5,546,50 02/07/00 74,90 70,30 5,546,90 02/14/00 74,50 69,90 5,547,05 03/01/00 74,35 69,75 5,547,05 03/01/00 74,35 69,75 5,547,05 03/08/00 74,35 69,75 5,547,10 03/15/00 74,30 69,70 5,547,20 03/20/00 73,90 69,30 5,547,40 03/29/00 74,00 69,40 5,547,20 04/04/00 74,20 69,60 5,547,70 04/28/00 73,70 69,10 5,547,70 04/28/00 73,70 69,10 5,547,70 05/01/00 73,70 69,10 5,547,90 05/15/00 73,70 69,10 5,547,90 06/09/00 73,50 68,90 5,547,95 07/06/00 73,50			5,616.80	5,621.40	4.60				126.00
5,546,20 01/02/00 75,20 70,60 5,546,50 01/10/00 74,90 70,30 5,546,60 01/24/00 74,80 70,20 5,546,50 02/01/00 74,90 70,30 5,546,50 02/07/00 74,90 70,30 5,546,90 02/14/00 74,50 69,90 5,547,05 03/01/00 74,35 69,75 5,547,05 03/01/00 74,35 69,75 5,547,05 03/08/00 74,35 69,75 5,547,10 03/15/00 74,30 69,70 5,547,20 03/20/00 73,90 69,30 5,547,40 03/29/00 74,00 69,40 5,547,20 04/04/00 74,20 69,60 5,547,70 04/28/00 73,70 69,10 5,547,70 04/28/00 73,70 69,10 5,547,70 05/01/00 73,70 69,10 5,547,90 05/15/00 73,70 69,10 5,547,90 06/09/00 73,50 68,90 5,547,95 07/06/00 73,50		5,546.40				11/29/99	75.00	70.40	
5,546,50 01/10/00 74,90 70,30 5,546,60 01/24/00 74,80 70,20 5,546,60 01/24/00 74,80 70,20 5,546,50 02/01/00 74,90 70,30 5,546,50 02/14/00 74,50 69,90 5,546,90 02/14/00 74,50 69,90 5,546,95 02/23/00 74,45 69,85 5,547,05 03/01/00 74,35 69,75 5,547,05 03/08/00 74,35 69,75 5,547,10 03/15/00 74,30 69,70 5,547,40 03/20/00 73,90 69,30 5,547,40 04/04/00 74,20 69,60 5,547,60 04/21/00 73,0 69,10 5,547,70 04/28/00 73,70 69,10 5,547,70 05/01/00 73,70 69,10 5,547,90 05/15/00 73,70 69,10 5,547,90 05/25/00 73,50 68,90 5,547,90 05/25/00 73,50 68,90 5,548,80 06/09/00 73,40<						01/02/00	75.20	70.60	
5,546.60 01/24/00 74.80 70.20 5,546.50 02/01/00 74.90 70.30 5,546.50 02/07/00 74.90 70.30 5,546.90 02/14/00 74.50 69.90 5,546.95 02/23/00 74.45 69.85 5,547.05 03/01/00 74.35 69.75 5,547.10 03/15/00 74.30 69.70 5,547.40 03/20/00 73.90 69.30 5,547.40 03/29/00 73.00 69.40 5,547.20 04/04/00 74.20 69.60 5,547.40 04/13/00 74.00 69.40 5,547.60 04/13/00 74.00 69.40 5,547.70 04/28/00 73.70 69.10 5,547.70 04/28/00 73.70 69.10 5,547.90 05/51/00 73.70 69.10 5,547.90 05/55/00 73.50 68.90 5,547.90 05/25/00 73.50 68.90 5,548.00 06/09/00 73.50 68.90 5,548.90 06/09/00 73.40						01/10/00	74.90	70.30	
5,546.50 02/01/00 74.90 70.30 5,546.50 02/07/00 74.90 70.30 5,546.90 02/14/00 74.50 69.90 5,546.95 02/23/00 74.45 69.85 5,547.05 03/01/00 74.35 69.75 5,547.10 03/15/00 74.35 69.75 5,547.10 03/15/00 74.30 69.70 5,547.50 03/29/00 74.00 69.40 5,547.40 03/29/00 74.00 69.40 5,547.20 04/04/00 74.00 69.40 5,547.40 04/13/00 74.00 69.40 5,547.60 04/12/100 73.80 69.20 5,547.70 04/28/00 73.70 69.10 5,547.70 05/10/00 73.70 69.10 5,547.90 05/11/00 73.70 69.10 5,547.90 05/15/00 73.50 68.90 5,547.91 06/09/00 73.50 68.90 5,547.95 07/06/00 73.40 68.80 5,547.95 07/18/00 73.4		5,546.30				01/17/00	75.10	70.50	
5,546.50 02/07/00 74.90 70.30 5,546.90 02/14/00 74.50 69.90 5,546.95 02/23/00 74.45 69.85 5,547.05 03/08/00 74.35 69.75 5,547.10 03/15/00 74.35 69.75 5,547.10 03/15/00 74.35 69.70 5,547.50 03/20/00 73.90 69.30 5,547.40 03/29/00 74.00 69.40 5,547.20 04/04/00 74.20 69.60 5,547.40 04/13/00 74.00 69.40 5,547.60 04/21/00 73.80 69.20 5,547.70 05/01/00 73.70 69.10 5,547.70 05/01/00 73.40 68.80 5,547.90 05/15/00 73.70 69.10 5,547.90 05/15/00 73.50 68.90 5,547.90 06/09/00 73.50 68.90 5,547.87 06/06/00 73.40 68.80 5,547.85 07/18/00 73.45 68.85 5,548.10 07/18/00 73.45		5,546.60				01/24/00	74.80	70.20	
5,546.90 02/14/00 74.50 69.90 5,546.95 02/23/00 74.45 69.85 5,547.05 03/01/00 74.35 69.75 5,547.10 03/15/00 74.30 69.70 5,547.50 03/20/00 73.90 69.30 5,547.40 03/29/00 74.00 69.40 5,547.20 04/04/00 74.20 69.60 5,547.40 04/13/00 74.00 69.40 5,547.40 04/13/00 74.00 69.40 5,547.70 04/21/00 73.80 69.20 5,547.70 05/01/00 73.70 69.10 5,547.70 05/01/00 73.70 69.10 5,547.90 05/15/00 73.70 69.10 5,547.90 05/25/00 73.50 68.90 5,547.87 06/09/00 73.50 68.90 5,547.95 07/06/00 73.40 68.80 5,547.95 07/06/00 73.43 68.83 5,547.95 07/18/00 73.45 68.85 5,548.11 07/27/00 73.24		5,546.50				02/01/00	74.90	70.30	
5,546,95 02/23/00 74.45 69.85 5,547.05 03/01/00 74.35 69.75 5,547.05 03/08/00 74.30 69.70 5,547.10 03/15/00 74.30 69.70 5,547.50 03/20/00 73.90 69.30 5,547.40 03/29/00 74.00 69.40 5,547.20 04/04/00 74.20 69.60 5,547.40 04/13/00 74.00 69.40 5,547.60 04/21/00 73.80 69.20 5,547.70 05/01/00 73.70 69.10 5,547.70 05/01/00 73.70 69.10 5,547.70 05/15/00 73.70 69.10 5,547.90 05/25/00 73.50 68.80 5,547.90 05/25/00 73.50 68.90 5,547.87 06/05/00 73.53 68.90 5,547.95 07/06/00 73.40 68.80 5,547.95 07/18/00 73.45 68.85 5,548.11 07/27/00		5,546.50				02/07/00	74.90	70.30	
5,547.05 03/01/00 74.35 69.75 5,547.05 03/08/00 74.30 69.70 5,547.50 03/20/00 73.90 69.30 5,547.40 03/29/00 74.00 69.40 5,547.20 04/04/00 74.00 69.40 5,547.40 04/13/00 74.00 69.40 5,547.60 04/21/00 73.80 69.20 5,547.70 04/28/00 73.70 69.10 5,547.70 05/01/00 73.70 69.10 5,547.70 05/11/00 73.40 68.80 5,547.90 05/15/00 73.70 69.10 5,547.90 05/25/00 73.50 68.90 5,547.90 05/25/00 73.50 68.90 5,547.87 06/26/00 73.53 68.90 5,547.95 07/06/00 73.40 68.80 5,547.95 07/06/00 73.43 68.85 5,547.95 07/18/00 73.44 68.85 5,548.11 07/27/00 73.45 68.85 5,548.16 08/15/00 73.45		5,546.90				02/14/00	74.50	69.90	
5,547.05 03/08/00 74.35 69.75 5,547.10 03/15/00 74.30 69.70 5,547.50 03/20/00 73.90 69.30 5,547.40 03/29/00 74.00 69.40 5,547.20 04/04/00 74.20 69.60 5,547.40 04/13/00 74.00 69.40 5,547.60 04/21/00 73.80 69.20 5,547.70 04/28/00 73.70 69.10 5,547.70 05/01/00 73.70 69.10 5,547.70 05/15/00 73.70 69.10 5,547.90 05/25/00 73.50 68.90 5,547.90 05/25/00 73.50 68.90 5,547.90 06/09/00 73.50 68.90 5,547.95 07/06/00 73.40 68.80 5,547.95 07/06/00 73.45 68.83 5,547.95 07/06/00 73.45 68.83 5,548.11 07/27/00 73.45 68.85 5,548.11 08/09/00 73.25 68.69 5,548.16 08/09/00 73.25		5,546.95				02/23/00	74.45	69.85	
5,547.10 03/15/00 74.30 69.70 5,547.50 03/20/00 73.90 69.30 5,547.40 03/29/00 74.00 69.40 5,547.20 04/04/00 74.20 69.60 5,547.40 04/13/00 74.00 69.40 5,547.60 04/21/00 73.80 69.20 5,547.70 05/01/00 73.70 69.10 5,548.00 05/11/00 73.40 68.80 5,547.70 05/15/00 73.70 69.10 5,547.90 05/15/00 73.50 68.90 5,547.90 06/09/00 73.50 68.90 5,548.00 06/16/00 73.40 68.80 5,547.91 06/09/00 73.50 68.90 5,548.00 06/16/00 73.40 68.80 5,547.95 07/06/00 73.40 68.80 5,547.95 07/06/00 73.40 68.80 5,547.95 07/06/00 73.45 68.85 5,547.95 07/18/00 73.45 68.85 5,548.11 07/27/00 73.29		5,547.05				03/01/00	74.35	69.75	
5,547.50 03/20/00 73.90 69.30 5,547.40 03/29/00 74.00 69.40 5,547.20 04/04/00 74.20 69.60 5,547.40 04/13/00 74.00 69.40 5,547.60 04/21/00 73.80 69.20 5,547.70 04/28/00 73.70 69.10 5,547.70 05/01/00 73.70 69.10 5,547.70 05/15/00 73.70 69.10 5,547.90 05/15/00 73.70 69.10 5,547.90 05/25/00 73.50 68.90 5,547.90 06/09/00 73.50 68.90 5,547.91 06/09/00 73.50 68.90 5,547.92 06/09/00 73.50 68.80 5,547.95 07/06/00 73.40 68.80 5,547.95 07/06/00 73.45 68.85 5,547.95 07/18/00 73.45 68.85 5,548.11 07/27/00 73.29 68.69 5,548.15 08/02/00 73.25 68.65 5,548.16 08/15/00 73.24		5,547.05				03/08/00	74.35	69.75	
5,547.40 03/29/00 74.00 69.40 5,547.20 04/04/00 74.20 69.60 5,547.40 04/13/00 74.00 69.40 5,547.60 04/21/00 73.80 69.20 5,547.70 04/28/00 73.70 69.10 5,548.00 05/11/00 73.40 68.80 5,547.70 05/15/00 73.70 69.10 5,547.90 05/15/00 73.50 68.90 5,547.90 06/09/00 73.50 68.90 5,547.87 06/09/00 73.50 68.90 5,547.95 07/06/00 73.40 68.80 5,547.95 07/06/00 73.45 68.85 5,547.95 07/13/00 73.44 68.84 5,547.95 07/18/00 73.24 68.65 5,548.11 07/27/00 73.29 68.69 5,548.15 08/02/00 73.25 68.65 5,548.16 08/15/00 73.24 68.64 5,548.50 09/08/00 72.90 68.04 5,548.62 09/13/00 72.78		5,547.10				03/15/00	74.30	69.70	
5,547.20 04/04/00 74.20 69.60 5,547.40 04/13/00 74.00 69.40 5,547.60 04/21/00 73.80 69.20 5,547.70 04/28/00 73.70 69.10 5,547.70 05/01/00 73.70 69.10 5,548.00 05/11/00 73.40 68.80 5,547.70 05/15/00 73.70 69.10 5,547.90 05/25/00 73.50 68.90 5,547.80 06/09/00 73.50 68.90 5,547.81 06/26/00 73.53 68.93 5,547.95 07/13/00 73.44 68.85 5,547.95 07/13/00 73.44 68.84 5,547.95 07/13/00 73.44 68.85 5,548.11 07/27/00 73.29 68.69 5,548.15 08/02/00 73.25 68.65 5,548.16 08/15/00 73.24 68.64 5,548.40 08/31/00 73.00 68.40 5,548.50 09/08/00 72.90 68.30 5,548.62 09/13/00 72.78		5,547.50				03/20/00	73.90	69.30	
5,547.40 04/13/00 74.00 69.40 5,547.60 04/21/00 73.80 69.20 5,547.70 04/28/00 73.70 69.10 5,547.70 05/01/00 73.70 69.10 5,548.00 05/11/00 73.40 68.80 5,547.90 05/25/00 73.50 68.90 5,547.90 06/09/00 73.50 68.90 5,548.00 06/16/00 73.40 68.80 5,547.95 07/06/00 73.53 68.93 5,547.95 07/06/00 73.45 68.85 5,547.95 07/18/00 73.44 68.84 5,547.95 07/18/00 73.45 68.85 5,548.11 07/27/00 73.29 68.69 5,548.15 08/02/00 73.25 68.65 5,548.16 08/15/00 73.24 68.64 5,548.50 09/08/00 72.90 68.30 5,548.75 09/20/00 72.78 68.18 5,548.76 10/05/00 72.64 68.04 5,548.76 10/05/00 72.64		5,547.40				03/29/00	74.00	69.40	
5,547.60 04/21/00 73.80 69.20 5,547.70 04/28/00 73.70 69.10 5,547.70 05/01/00 73.70 69.10 5,548.00 05/11/00 73.40 68.80 5,547.70 05/15/00 73.70 69.10 5,547.90 05/25/00 73.50 68.90 5,547.90 06/09/00 73.50 68.90 5,547.87 06/26/00 73.53 68.93 5,547.95 07/06/00 73.45 68.85 5,547.96 07/13/00 73.44 68.84 5,548.11 07/27/00 73.29 68.69 5,548.15 08/02/00 73.25 68.65 5,548.16 08/31/00 73.24 68.64 5,548.62 09/13/00 72.78 68.18 5,548.75 09/08/00 72.90 68.30 5,548.76 10/05/00 72.64 68.04 5,548.76 10/05/00 72.64 68.04 5,548.85 12/06/00 72.55 67.95 5,549.87 01/03/01 71.93		5,547.20				04/04/00	74.20	69.60	
5,547.70 04/28/00 73.70 69.10 5,547.70 05/01/00 73.70 69.10 5,548.00 05/11/00 73.40 68.80 5,547.70 05/15/00 73.70 69.10 5,547.90 05/25/00 73.50 68.90 5,547.90 06/09/00 73.50 68.90 5,548.00 06/16/00 73.40 68.80 5,547.87 06/26/00 73.53 68.93 5,547.95 07/06/00 73.45 68.85 5,547.96 07/13/00 73.44 68.84 5,547.95 07/18/00 73.29 68.69 5,548.11 07/27/00 73.29 68.69 5,548.15 08/02/00 73.25 68.65 5,548.16 08/31/00 73.24 68.64 5,548.40 08/31/00 73.24 68.64 5,548.50 09/08/00 72.78 68.18 5,548.75 09/20/00 72.65 68.05 5,548.76 10/05/00 72.40 67.80 5,548.85 12/06/00 72.55		5,547.40				04/13/00	74.00	69.40	
5,547.70 05/01/00 73.70 69.10 5,548.00 05/11/00 73.40 68.80 5,547.70 05/15/00 73.70 69.10 5,547.90 05/25/00 73.50 68.90 5,548.00 06/09/00 73.50 68.90 5,548.87 06/26/00 73.53 68.93 5,547.95 07/06/00 73.45 68.85 5,547.96 07/13/00 73.44 68.84 5,547.95 07/18/00 73.45 68.85 5,548.11 07/27/00 73.29 68.69 5,548.15 08/02/00 73.25 68.65 5,548.16 08/15/00 73.24 68.64 5,548.16 08/15/00 73.24 68.64 5,548.50 09/08/00 72.90 68.30 5,548.51 09/08/00 72.78 68.18 5,548.75 09/20/00 72.65 68.05 5,548.76 10/05/00 72.66 68.05 5,548.76 10/05/00 72.66 68.04 5,549.87 10/06/00 72.55		5,547.60				04/21/00	73.80	69.20	
5,548.00 05/11/00 73.40 68.80 5,547.70 05/15/00 73.70 69.10 5,547.90 05/25/00 73.50 68.90 5,547.90 06/09/00 73.50 68.90 5,548.00 06/16/00 73.40 68.80 5,547.87 06/26/00 73.53 68.93 5,547.95 07/06/00 73.45 68.85 5,547.96 07/13/00 73.44 68.84 5,548.11 07/27/00 73.29 68.69 5,548.15 08/02/00 73.25 68.65 5,548.16 08/31/00 73.24 68.64 5,548.40 08/31/00 73.00 68.40 5,548.50 09/08/00 72.90 68.30 5,548.62 09/13/00 72.78 68.18 5,548.75 09/20/00 72.65 68.05 5,548.76 10/05/00 72.64 68.04 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51		5,547.70				04/28/00	73.70	69.10	
5,547.70 05/15/00 73.70 69.10 5,547.90 05/25/00 73.50 68.90 5,547.90 06/09/00 73.50 68.90 5,548.00 06/16/00 73.40 68.80 5,547.87 06/26/00 73.53 68.93 5,547.95 07/06/00 73.45 68.85 5,547.95 07/13/00 73.44 68.84 5,547.95 07/18/00 73.45 68.85 5,548.11 07/27/00 73.29 68.69 5,548.15 08/02/00 73.25 68.65 5,548.17 08/09/00 73.23 68.63 5,548.16 08/15/00 73.24 68.64 5,548.40 08/31/00 73.00 68.40 5,548.50 09/08/00 72.90 68.30 5,548.62 09/13/00 72.78 68.18 5,548.76 10/05/00 72.65 68.05 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51		5,547.70				05/01/00	73.70	69.10	
5,547.90 05/25/00 73.50 68.90 5,547.90 06/09/00 73.50 68.90 5,548.00 06/16/00 73.40 68.80 5,547.87 06/26/00 73.53 68.93 5,547.95 07/06/00 73.45 68.85 5,547.96 07/13/00 73.44 68.84 5,547.95 07/18/00 73.45 68.85 5,548.11 07/27/00 73.29 68.69 5,548.15 08/02/00 73.25 68.65 5,548.16 08/09/00 73.23 68.63 5,548.40 08/31/00 73.00 68.40 5,548.50 09/08/00 72.90 68.30 5,548.62 09/13/00 72.78 68.18 5,548.76 10/05/00 72.64 68.04 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43		5,548.00				05/11/00	73.40	68.80	
5,547.90 06/09/00 73.50 68.90 5,548.00 06/16/00 73.40 68.80 5,547.87 06/26/00 73.53 68.93 5,547.95 07/06/00 73.45 68.85 5,547.96 07/13/00 73.44 68.84 5,547.95 07/18/00 73.45 68.85 5,548.11 07/27/00 73.29 68.69 5,548.15 08/02/00 73.25 68.65 5,548.16 08/15/00 73.24 68.64 5,548.40 08/31/00 73.00 68.40 5,548.50 09/08/00 72.90 68.30 5,548.62 09/13/00 72.78 68.18 5,548.75 09/20/00 72.65 68.05 5,548.76 10/05/00 72.40 67.80 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43		5,547.70				05/15/00	73.70	69.10	
5,548.00 06/16/00 73.40 68.80 5,547.87 06/26/00 73.53 68.93 5,547.95 07/06/00 73.45 68.85 5,547.96 07/13/00 73.44 68.84 5,547.95 07/18/00 73.45 68.85 5,548.11 07/27/00 73.29 68.69 5,548.15 08/02/00 73.25 68.65 5,548.16 08/15/00 73.24 68.64 5,548.40 08/31/00 73.00 68.40 5,548.50 09/08/00 72.90 68.30 5,548.62 09/13/00 72.78 68.18 5,548.75 09/20/00 72.65 68.05 5,548.76 10/05/00 72.64 68.04 5,549.00 11/09/00 72.40 67.80 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43		5,547.90				05/25/00	73.50	68.90	
5,547.87 06/26/00 73.53 68.93 5,547.95 07/06/00 73.45 68.85 5,547.96 07/13/00 73.44 68.84 5,547.95 07/18/00 73.45 68.85 5,548.11 07/27/00 73.29 68.69 5,548.15 08/02/00 73.25 68.65 5,548.17 08/09/00 73.23 68.63 5,548.16 08/15/00 73.24 68.64 5,548.40 08/31/00 73.00 68.40 5,548.50 09/08/00 72.90 68.30 5,548.62 09/13/00 72.78 68.18 5,548.75 09/20/00 72.65 68.05 5,548.76 10/05/00 72.64 68.04 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43		5,547.90				06/09/00	73.50	68.90	
5,547.95 07/06/00 73.45 68.85 5,547.96 07/13/00 73.44 68.84 5,547.95 07/18/00 73.45 68.85 5,548.11 07/27/00 73.29 68.69 5,548.15 08/02/00 73.25 68.65 5,548.17 08/09/00 73.23 68.63 5,548.16 08/15/00 73.24 68.64 5,548.40 08/31/00 73.00 68.40 5,548.50 09/08/00 72.90 68.30 5,548.62 09/13/00 72.78 68.18 5,548.75 09/20/00 72.65 68.05 5,548.76 10/05/00 72.64 68.04 5,549.00 11/09/00 72.40 67.80 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43		5,548.00				06/16/00	73.40	68.80	
5,547.96 07/13/00 73.44 68.84 5,547.95 07/18/00 73.45 68.85 5,548.11 07/27/00 73.29 68.69 5,548.15 08/02/00 73.25 68.65 5,548.17 08/09/00 73.23 68.63 5,548.16 08/15/00 73.24 68.64 5,548.40 08/31/00 73.00 68.40 5,548.50 09/08/00 72.90 68.30 5,548.62 09/13/00 72.78 68.18 5,548.75 09/20/00 72.65 68.05 5,548.76 10/05/00 72.64 68.04 5,549.80 11/09/00 72.40 67.80 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43		5,547.87				06/26/00		68.93	
5,547.95 07/18/00 73.45 68.85 5,548.11 07/27/00 73.29 68.69 5,548.15 08/02/00 73.25 68.65 5,548.17 08/09/00 73.23 68.63 5,548.16 08/15/00 73.24 68.64 5,548.40 08/31/00 73.00 68.40 5,548.50 09/08/00 72.90 68.30 5,548.62 09/13/00 72.78 68.18 5,548.75 09/20/00 72.65 68.05 5,548.76 10/05/00 72.64 68.04 5,549.00 11/09/00 72.40 67.80 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43		5,547.95				07/06/00	73.45	68.85	
5,548.11 07/27/00 73.29 68.69 5,548.15 08/02/00 73.25 68.65 5,548.17 08/09/00 73.23 68.63 5,548.16 08/15/00 73.24 68.64 5,548.40 08/31/00 73.00 68.40 5,548.50 09/08/00 72.90 68.30 5,548.62 09/13/00 72.78 68.18 5,548.75 09/20/00 72.65 68.05 5,548.76 10/05/00 72.64 68.04 5,549.00 11/09/00 72.40 67.80 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43		5,547.96				07/13/00	73.44	68.84	
5,548.15 08/02/00 73.25 68.65 5,548.17 08/09/00 73.23 68.63 5,548.16 08/15/00 73.24 68.64 5,548.40 08/31/00 73.00 68.40 5,548.50 09/08/00 72.90 68.30 5,548.62 09/13/00 72.78 68.18 5,548.75 09/20/00 72.65 68.05 5,548.76 10/05/00 72.64 68.04 5,549.00 11/09/00 72.40 67.80 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43		5,547.95				07/18/00	73.45	68.85	
5,548.17 08/09/00 73.23 68.63 5,548.16 08/15/00 73.24 68.64 5,548.40 08/31/00 73.00 68.40 5,548.50 09/08/00 72.90 68.30 5,548.62 09/13/00 72.78 68.18 5,548.75 09/20/00 72.65 68.05 5,548.76 10/05/00 72.64 68.04 5,549.00 11/09/00 72.40 67.80 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43		5,548.11				07/27/00	73.29	68.69	
5,548.16 08/15/00 73.24 68.64 5,548.40 08/31/00 73.00 68.40 5,548.50 09/08/00 72.90 68.30 5,548.62 09/13/00 72.78 68.18 5,548.75 09/20/00 72.65 68.05 5,548.76 10/05/00 72.64 68.04 5,549.00 11/09/00 72.40 67.80 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43		5,548.15				08/02/00	73.25	68.65	
5,548.40 08/31/00 73.00 68.40 5,548.50 09/08/00 72.90 68.30 5,548.62 09/13/00 72.78 68.18 5,548.75 09/20/00 72.65 68.05 5,548.76 10/05/00 72.64 68.04 5,549.00 11/09/00 72.40 67.80 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43		5,548.17				08/09/00	73.23	68.63	
5,548.50 09/08/00 72.90 68.30 5,548.62 09/13/00 72.78 68.18 5,548.75 09/20/00 72.65 68.05 5,548.76 10/05/00 72.64 68.04 5,549.00 11/09/00 72.40 67.80 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43		5,548.16				08/15/00	73.24		
5,548.62 09/13/00 72.78 68.18 5,548.75 09/20/00 72.65 68.05 5,548.76 10/05/00 72.64 68.04 5,549.00 11/09/00 72.40 67.80 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43		5,548.40					73.00		
5,548.75 09/20/00 72.65 68.05 5,548.76 10/05/00 72.64 68.04 5,549.00 11/09/00 72.40 67.80 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43		5,548.50				09/08/00	72.90	68.30	
5,548.76 10/05/00 72.64 68.04 5,549.00 11/09/00 72.40 67.80 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43		5,548.62				09/13/00			
5,549.00 11/09/00 72.40 67.80 5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43		5,548.75				09/20/00	72.65		
5,548.85 12/06/00 72.55 67.95 5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43									
5,549.47 01/03/01 71.93 67.33 5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43									
5,549.89 02/09/01 71.51 66.91 5,550.37 03/27/01 71.03 66.43									
5,550.37 03/27/01 71.03 66.43									
,									
5,550.50 04/30/01 70.90 66.30									
	(4)	5,550.50				04/30/01	70.90	66.30	

					Total or		
		Measuring			Measured		
Water	Land	Point			Depth to	Total Depth	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	to Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,616.80	5,621.40	4.60				126.00
5,550.68				05/31/01	70.72	66.12	
5,550.68				06/20/01	70.72	66.12	
5,551.02				07/10/01	70.38	65.78	
5,551.32				08/20/01	70.08	65.48	
5,551.49				09/19/01	69.91	65.31	
5,551.64				10/02/01	69.76	65.16	
5,551.81				11/08/01	69.59	64.99	
5,552.22				12/03/01	69.18	64.58	
5,552.16				01/03/02	69.24	64.64	
5,552.38				02/06/02	69.02	64.42	
5,552.85				03/26/02	68.55	63.95	
5,552.83				04/09/02	68.57	63.97	
5,553.20				05/23/02	68.20	63.60	
5,553.16				06/05/02	68.24	63.64	
5,553.32				07/08/02	68.08	63.48	
5,553.49				08/23/02	67.91	63.31	
5,553.69				09/11/02	67.71	63.11	
5,554.09				10/23/02	67.31	62.71	
5,554.02				11/22/02	67.38	62.78	
5,554.23				12/03/02	67.17	62.57	
5,554.43				01/09/03	66.97	62.37	
5,554.42				02/12/03	66.98	62.38	
5,554.71				03/26/03	66.69	62.09	
5,554.83				04/02/03	66.57	61.97	
5,552.21				05/01/03	69.19	64.59	
5,547.93				06/09/03	73.47	68.87	
5,546.97				07/07/03	74.43	69.83	
5,546.58				08/04/03	74.82	70.22	
5,546.24				09/11/03	75.16	70.56	
5,546.38				10/02/03	75.02	70.42	
5,546.40				11/07/03	75.00	70.40	
5,546.59				12/03/03	74.81	70.21	
5,551.29				01/15/04	70.11	65.51	
5,552.69				02/10/04	68.71	64.11	
5,554.06				03/28/04	67.34	62.74	
5,554.52	8			04/12/04	66.88	62.28	
5,555.06				05/13/04	66.34	61.74	
5,555.11				06/18/04	66.29	61.69	
5,555.88				07/28/04	65.52	60.92	
5,552.97				08/30/04	68.43	63.83	
5,550.65				09/16/04	70.75	66.15	
5,548.40				10/11/04	73.00	68.40	
5,548.28				11/16/04	73.12	68.52	

					Total or		
		Measuring			Measured		
Water	Land	Point			Depth to	Total Depth	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	to Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,616.80	5,621.40	4.60				126.00
5,548.80				12/22/04	72.60	68.00	
5,548.43				01/18/05	72.97	68.37	
5,548.61				02/28/05	72.79	68.19	
5,548.64				03/15/05	72.76	68.16	
5,548.65				04/26/05	72.75	68.15	
5,548.85				05/24/05	72.55	67.95	
5,548.73				06/30/05	72.67	68.07	
5,548.62				07/29/05	72.78	68.18	
5,548.80				09/12/05	72.60	68.00	
5,548.71				12/07/05	72.69	68.09	
5,549.72				03/08/06	71.68	67.08	
5,549.70				06/13/06	71.70	67.10	
5,549.70				07/18/06	71.70	67.10	
5,549.65				11/07/06	71.75	67.15	
5,551.11				02/27/07	70.29	65.69	
5,550.20				05/02/07	71.20	66.60	
5,550.59				08/14/07	70.81	66.21	
5,550.76				10/10/07	70.64	66.04	
5,551.95				03/26/08	69.45	64.85	
5,552.36				06/24/08	69.04	64.44	
5,552.50				08/26/08	68.9	64.30	
5,552.56				10/14/08	68.84	64.24	
5,552.91				03/03/09	68.49	63.89	
5,553.27				06/24/09	68.13	63.53	
5,553.12				09/10/09	68.28	63.68	
5,553.63				12/11/09	67.77	63.17	
5,554.65				03/11/10	66.75	62.15	
5,554.57				05/11/10	66.83	62.23	
5,554.34				09/29/10	67.06	62.46	
5,554.09				12/21/10	67.31	62.71	
5,554.50				02/28/11	66.9	62.30	
5,554.79				06/21/11	66.61	62.01	
5,554.63				09/20/11	66.77	62.17	
5,555.01				12/21/11	66.39	61.79	
5,554.85				03/27/12	66.55	61.95	
5,554.90				06/28/12	66.50	61.90	
5,554.85				09/27/12	66.55	61.95	
5,554.86				12/28/12	66.54	61.94	
5,556.48				03/28/13	64.92	60.32	
5,556.35				06/27/13	65.05	60.45	
5,556.60				09/27/13	64.8	60.20	
5,556.56				12/20/13	64.84	60.24	
5,556.38				03/27/14	65.02	60.42	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,636.11	5,637.59	1.48				121.33
5,577.09				12/20/99	60.50	59.02	
5,577.09				01/02/00	60.50	59.02	
5,577.29				01/10/00	60.30	58.82	
5,577.09				01/17/00	60.50	59.02	
5,577.39				01/24/00	60.20	58.72	
5,577.29				02/01/00	60.30	58.82	
5,577.19				02/07/00	60.40	58.92	
5,577.69				02/14/00	59.90	58.42	
5,577.69				02/23/00	59.90	58.42	
5,577.79				03/01/00	59.80	58.32	
5,577.79				03/08/00	59.80	58.32	
5,577.89				03/15/00	59.70	58.22	
5,568.49				03/20/00	69.10	67.62	
5,578.14				03/29/00	59.45	57.97	
5,577.84				04/04/00	59.75	58.27	
5,578.04				04/13/00	59.55	58.07	
5,578.24				04/21/00	59.35	57.87	
5,578.39				04/28/00	59.20	57.72	
5,578.39				05/01/00	59.20	57.72	
5,578.79				05/11/00	58.80	57.32	
5,578.39				05/15/00	59.20	57.72	
5,578.79				05/25/00	58.80	57.32	
5,578.81				06/09/00	58.78	57.30	
5,578.89				06/16/00	58.70	57.22	
5,578.74				06/26/00	58.85	57.37	
5,578.86				07/06/00	58.73	57.25	
5,578.87				07/13/00	58.72	57.24	
5,578.84				07/18/00	58.75	57.27	
5,579.03				07/27/00	58.56	57.08	
5,579.03				08/02/00	58.56	57.08	
5,579.05				08/09/00	58.54	57.06	
5,579.04				08/15/00	58.55	57.07	
5,579.25				08/31/00	58.34	56.86	
5,579.35				09/08/00	58.24	56.76	
5,579.40				09/13/00	58.19	56.71	
5,579.46				09/20/00	58.13	56.65	
5,579.44				10/05/00	58.15	56.67	
5,579.79				11/09/00	57.80	56.32	
5,579.73				12/06/00	57.86	56.38	
5,580.01				01/03/01	57.58	56.10	
5,580.30				02/09/01	57.29	55.81	
5,580.66				03/27/01	56.93	55.45	
5,580.75				04/30/01	56.84	55.36	

						Total or		
			Measuring			Measured	Total	
	Water	Land	Point			Depth to	Depth to	Total
	Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
	(WL)	(LSD)	(MP)	Riser (L)	Monitoring		(blw.LSD)	Well
		5,636.11	5,637.59	1.48	9			121.33
1	5,581.04		,		05/31/01	56.55	55.07	
	5,581.12				06/21/01	56.47	54.99	
	5,581.15				07/10/01	56.44	54.96	
	5,581.51				08/20/01	56.08	54.60	
	5,581.70				09/19/01	55.89	54.41	
	5,581.61				10/02/01	55.98	54.50	
	5,581.83				11/08/01	55.76	54.28	
	5,582.17				12/03/01	55.42	53.94	
	5,582.21				01/03/02	55.38	53.90	
	5,582.57				02/06/02	55.02	53.54	
	5,583.12				03/26/02	54.47	52.99	
	5,582.77				04/09/02	54.82	53.34	
	5,583.21				05/23/02	54.38	52.90	
	5,582.94				06/05/02	54.65	53.17	
	5,582.71				07/08/02	54.88	53.40	
	5,583.67				08/23/02	53.92	52.44	
	5,583.82				09/11/02	53.77	52.29	
	5,584.01				10/23/02	53.58	52.10	
					11/22/02	53.71	52.23	
	5,583.88				12/03/02	53.78	52.23	
	5,583.81					53.76	51.83	
	5,584.28				01/09/03			
	5,584.41				02/12/03	53.18	51.70	
	5,584.68				03/26/03	52.91	51.43	
	5,584.49				04/02/03	53.10	51.62	
	5,584.51				05/01/03	53.08	51.60	
	5,583.59				06/09/03	54.00	52.52	
	5,582.96				07/07/03	54.63	53.15	
	5,582.98				08/04/03	54.61	53.13	
	5,582.57				09/11/03	55.02	53.54	
	5,582.25				10/02/03	55.34	53.86	
	5,582.09				11/07/03	55.50	54.02	
	5,582.48				12/03/03	55.11	53.63	
	5,583.69				01/15/04	53.90	52.42	
	5,583.89				02/10/04	53.70	52.22	
	5,584.30				03/28/04	53.29	51.81	
	5,584.59				04/12/04	53.00	51.52	
	5,584.87				05/13/04	52.72	51.24	
	5,584.96				06/18/04	52.63	51.15	
	5,585.50				07/28/04	52.09	50.61	
	5,584.81				08/30/04	52.78	51.30	
	5,584.40				09/16/04	53.19	51.71	
	5,583.91				10/11/04	53.68	52.20	
	5,583.39				11/16/04	54.20	52.72	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,636.11	5,637.59	1.48				121.33
5,583.54				12/22/04	54.05	52.57	
5,583.34				01/18/05	54.25	52.77	
5,583,66				02/28/05	53.93	52.45	
5,583.87				03/15/05	53.72	52.24	
5,584.74				04/26/05	52.85	51.37	
5,585.26				05/24/05	52.33	50.85	
5,585.06				06/30/05	52.53	51.05	
5,584.67				07/29/05	52.92	51.44	
5,584.75				09/12/05	52.84	51.36	
5,584.51				12/07/05	53.08	51.60	
5,585.74				03/08/06	51.85	50.37	
5,584.74				06/13/06	52.85	51.37	
5,584.26				07/18/06	53.33	51.85	
5,584.21				11/07/06	53.38	51.90	
5,584.67				02/27/07	52.92	51.44	
5,584.06				05/02/07	53.53	52.05	
5,585.33				08/14/07	52.26	50.78	
5,585.42				10/10/07	52.17	50.69	
5,587.01				03/26/08	50.58	49.10	
5,585.44				06/24/08	52.15	50.67	
5,585.23				08/26/08	52.36	50.88	
5,584.42		14		10/14/08	53.17	51.69	
5,583.59				03/03/09	54.00	52.52	
5,583.35				06/24/09	54.24	52.76	
5,582.91				09/10/09	54.68	53.20	
5,583.43				12/11/09	54.16	52.68	
5,584.00				03/11/10	53.59	52.11	
5,583.27				05/11/10	54.32	52.84	
5,582.92				09/29/10	54.67	53.19	
5,583.08				12/21/10	54.51	53.03	
5,582.63				02/28/11	54.96	53.48	
5,583.62				06/21/11	53.97	52.49	
5,583.52				09/20/11	54.07	52.59	
5,583.91				12/21/11	53.68	52.20	
5,582.84				03/27/12	54.75	53.27	
5,582.84				06/28/12	54.75	53.27	
5,582.92				09/27/12	54.67	53.19	
5,582.84				12/28/12	54.75	53.27	
5,581.97				03/28/13	55.62	54.14	
5,581.19				06/27/13	56.40	54.92	
5,580.50				09/27/13	57.09	55.61	
5,579.73				12/20/13	57.86	56.38	
5,578.61				03/27/14	58.98	57.50	

		vvn	ite iviesa ivi	iii - weii i v			
					Total or		
		Measuring			Measured		
Water	Land	Point			Depth to	Total Depth	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	to Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,631.99	5,634.24	2.25	9_			111
5,576.75				01/03/02	57.49	55.24	
5,576.92				02/06/02	57.32	55.07	
5,577.43				03/26/02	56.81	54.56	
5,577.22				04/09/02	57.02	54.77	
5,577.80				05/23/02	56.44	54.19	
5,577.47				06/05/02	56.77	54.52	
5,577.55				07/08/02	56.69	54.44	
5,578.10				08/23/02	56.14	53.89	
5,578.24				09/11/02	56.00	53.75	
5,578.49				10/23/02	55.75	53.50	
5,578.43				11/22/02	55.81	53.56	
5,578.43				12/03/02	55.81	53.56	
5,578.66				01/09/03	55.58	53.33	
5,578.66				02/12/03	55.58	53.33	
5,578.78				03/26/03	55.46	53.21	
5,578.90				04/02/03	55.34	53.09	
5,578.83				05/01/03	55.41	53.16	
5,578.05				06/09/03	56.19	53.94	
5,577.38				07/07/03	56.86	54.61	
5,577.15				08/04/03	57.09	54.84	
5,576.76				09/11/03	57.48	55.23	
5,576.36				10/02/03	57.88	55.63	
5,576.05				11/07/03	58.19	55.94	
5,576.20				12/03/03	58.04	55.79	
5,577.43				01/15/04	56.81	54.56	
5,577.81				02/10/04	56.43	54.18	
5,578.47				03/28/04	55.77	53.52	
5,578.69				04/12/04	55.55	53.30	
5,578.93				05/13/04	55.31	53.06	
5,578.99				06/18/04	55.25	53.00	
5,579.18				07/28/04	55.06	52.81	
5,579.06				08/30/04	55.18	52.93	
5,578.78				09/16/04	55.46	53.21	
5,577.80				10/11/04	56.44	54.19	
5,577.13				11/16/04	57.11	54.86	
5,576.96				12/22/04	57.28	55.03	
5,576.63				01/18/05	57.61	55.36	
5,576.82				02/28/05	57.42	55.17	
5,576.86				03/15/05	57.42	55.17	
5,577.52				04/26/05	56.72	54.47	
5,578.01				05/24/05	56.23	53.98	
				05/24/05	56.23		
5,578.15						53.84	
5,577.90				07/29/05	56.34	54.09	

		** 11	ite iviesa ivi	III - WEII I V			
VV		Measuring			Total or Measured	T 4 ID 4	m . 1
Water Elevation	Land	Point Elevation	I41. Of	Date Of	Depth to Water	Total Depth to Water	Total
(WL)	Surface (LSD)	(MP)	Length Of Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Depth Of Well
(WL)	5,631.99	5,634.24	2.25	Montoring	(DIWAVIF)	(BIW.LSD)	111
5,578.02	3,031.77	5,031.21	2.23	09/12/05	56.22	53.97	
5,577.56				12/07/05	56.68	54.43	
5,579.69				03/08/06	54.55	52.30	
5,578.34				06/13/06	55.90	53.65	
5,577.94				07/18/06	56.30	54.05	
5,578.01				11/07/06	56.23	53.98	
5578.43				02/27/07	55.81	53.56	
5,577.84				05/02/07	56.40	54.15	
5,578.74				08/14/07	55.50	53.25	
5,579.04				10/10/07	55.20	52.95	
5,580.69				03/26/08	53.55	51.30	
5,579.87				06/24/08	54.37	52.12	
5,579.47				08/26/08	54.77	52.52	
5,578.87				10/14/08	55.37	53.12	
5,578.01				03/10/09	56.23	53.98	
5,577.85				06/24/09	56.39	54.14	
5,577.49				09/10/09	56.75	54.50	
5,577.98				12/11/09	56.26	54.01	
5,578.38				03/11/10	55.86	53.61	
5,578.16				05/11/10	56.08	53.83	
5,577.85				09/29/10	56.39	54.14	
5,577.28				12/21/10	56.96	54.71	
5,577.14				02/28/11	57.1	54.85	
5,578.09				06/21/11	56.15	53.90	
5,578.24				09/20/11	56	53.75	
5,578.74				12/21/11	55.5	53.25	
5,577.89				03/27/12	56.35	54.10	
5,577.90				06/28/12	56.34	54.09	
5,578.29				09/27/12	55.95	53.70	
5,577.87				12/28/12	56.37	54.12	
5,577.92				03/28/13	56.32	54.07	
5,577.19				06/27/13	57.05	54.80	
5,576.77				09/27/13	57.47	55.22	
5,576.22				12/20/13	58.02	55.77	
5,575.36				03/27/14	58.88	56.63	

		* * * * * * * * * * * * * * * * * * * *	THE SECTION	· ((CH I)	Total or		
		Magazzina			Measured	Total	
Water	Land	Measuring Point					Takal
Elevation	Surface	Elevation	Longth Of	Data Of	Depth to Water	Depth to Water	Total
(WL)		(MP)	Length Of Riser (L)	Date Of Monitoring	(blw.MP)	(blw.LSD)	Depth Of Well
(WL)	(LSD) 5,621.92	5,623.62	1.70	Monitoring	(DIW.MIP)	(blw.LSD)	100
5,548.32	3,021.92	3,023.02	1.70	01/03/02	75.30	72.60	100
5,548.73					74.89	73.60 73.19	
5,549.03				02/06/02 03/26/02	74.89 74.59	73.19	
5,548.84				03/20/02	74.39 74.78		
5,549.30						73.08 72.62	
12.1				05/23/02 06/05/02	74.32 74.61	72.02	
5,549.01							
5,549.22				07/08/02	74.40	72.70	
5,549.44				08/23/02	74.18	72.48	
5,549.57				09/11/02	74.05	72.35	
5,549.64				10/23/02	73.98	72.28	
5,549.58				11/22/02	74.04	72.34	
5,549.62				12/03/02	74.00	72.30	
5,549.85				01/09/03	73.77	72.07	
5,549.91				02/12/03	73.71	72.01	
5,550.15				03/26/03	73.47	71.77	
5,550.01				04/02/03	73.61	71.91	
5,550.31				05/01/03	73.31	71.61	
5,550.44				06/09/03	73.18	71.48	
5,550.33				07/07/03	73.29	71.59	
5,550.35				08/04/03	73.27	71.57	
5,550.44				09/11/03	73.18	71.48	
5,550.47				10/02/03	73.15	71.45	
5,550.60				11/07/03	73.02	71.32	
5,550.60				12/03/03	73.02	71.32	
5,550.94				01/15/04	72.68	70.98	
5,551.00				02/10/04	72.62	70.92	
5,550.34				03/28/04	73.28	71.58	
5,551.54				04/12/04	72.08	70.38	
5,551.89				05/13/04	71.73	70.03	
5,551.94				06/18/04	71.68	69.98	
5,552.49				07/28/04	71.13	69.43	
5,552.74				08/30/04	70.88	69.18	
5,553.01				09/16/04	70.61	68.91	
5,553.11				10/11/04	70.51	68.81	
5,553.19				11/16/04	70.43	68.73	
5,553.53				12/22/04	70.09	68.39	
5,553.31				01/18/05	70.31	68.61	
5,553.84				02/28/05	69.78	68.08	
5,554.04				03/15/05	69.58	67.88	
5,554.23				04/26/05	69.39	67.69	
5,553.87				05/24/05	69.75	68.05	
5,554.46				06/30/05	69.16	67.46	
5,554.57				07/29/05	69.05	67.35	

		vv nite	Mesa Mil	ı - vven ı v			
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,621.92	5,623.62	1.70				100
5,553.86				09/12/05	69.76	68.06	
5,555.30				12/07/05	68.32	66.62	
5,556.20				03/08/06	67.42	65.72	
5,556.48				06/14/06	67.14	65.44	
5,556.37				07/18/06	67.25	65.55	
5,556.94				11/07/06	66.68	64.98	
5557.92				02/27/07	65.70	64	
5,557.84				05/02/07	65.78	64.08	
5,558.02				08/15/07	65.60	63.90	
5,557.13				10/10/07	66.49	64.79	
5,569.74				03/26/08	53.88	52.18	
5,561.01				06/24/08	62.61	60.91	
5,562.07				08/26/08	61.55	59.85	
5,562.47				10/14/08	61.15	59.45	
5,563.80				03/10/09	59.82	58.12	
5,564.27				06/24/09	59.35	57.65	
5,564.32				09/10/09	59.30	57.60	
5,564.70				12/11/09	58.92	57.22	
5,565.14				03/11/10	58.48	56.78	
5,565.61				05/11/10	58.01	56.31	
5,565.67				09/29/10	57.95	56.25	
5,565.62				12/21/10	58.00	56.30	
5,565.42				02/28/11	58.20	56.50	
5,566.01				06/21/11	57.61	55.91	
5,566.03				09/20/11	57.59	55.89	
5,566.63				12/21/11	56.99	55.29	
5,565.81				03/27/12	57.81	56.11	
5,565.82				06/28/12	57.80	56.10	
5,566.66				09/27/12	56.96	55.26	
5,565.77				12/28/12	57.85	56.15	
5,566.89				03/28/13	56.73	55.03	
5,566.32				06/27/13	57.30	55.60	
5,565.92				09/27/13	57.70	56.00	
5,565.63				12/20/13	57.99	56.29	
5,565.03				03/27/14	58.59	56.89	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,622.38	5,624.23	1.85				101.5
5,580.91				08/23/02	43.32	41.47	
5,581.54				09/11/02	42.69	40.84	
5,581.33				10/23/02	42.90	41.05	
5,581.47				11/22/02	42.76	40.91	
5,581.55				12/03/02	42.68	40.83	
5,582.58				01/09/03	41.65	39.80	
5,582.47				02/12/03	41.76	39.91	
5,582.71				03/26/03	41.52	39.67	
5,582.11				04/02/03	42.12	40.27	
5,582.92				05/01/03	41.31	39.46	
5,583.13				06/09/03	41.10	39.25	
5,583.21				07/07/03	41.02	39.17	
5,583.31				08/04/03	40.92	39.07	
5,583.55				09/11/03	40.68	38.83	
5,583.72				10/02/03	40.51	38.66	
5,583.77				11/07/03	40.46	38.61	
5,584.01				12/03/03	40.22	38.37	
5,584.37				01/15/04	39.86	38.01	
5,584.39				02/10/04	39.84	37.99	
5,584.51				03/28/04	39.72	37.87	
5,584.90				04/12/04	39.33	37.48	
5,584.88				05/13/04	39.35	37.50	
5,584.93				06/18/04	39.30	37.45	
5,585.36				07/28/04	38.87	37.02	
5,585.38				08/30/04	38.85	37.00	
5,585.49				09/16/04	38.74	36.89	
5,585.85				10/11/04	38.38	36.53	
5,585.91				11/16/04	38.32	36.47	
5,586.35				12/22/04	37.88	36.03	
5,586.14				01/18/05	38.09	36.24	
5,586.56				02/28/05	37.67	35.82	
5,586.95				03/15/05	37.28	35.43	
5,587.20				04/26/05	37.03	35.18	
5,587.35				05/24/05	36.88	35.03	
5,587.58				06/30/05	36.65	34.80	
5,587.58				07/29/05	36.65	34.80	
5,587.94				09/12/05	36.29	34.44	
5,588.43				12/07/05	35.80	33.95	
5,588.92				03/08/06	35.31	33.46	
5,588.34				06/13/06	35.89	34.04	
5,588.33				07/18/06	35.90	34.05	
5,584.70				11/07/06	39.53	37.68	
5588.85				02/27/07	35.38	33.53	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,622.38	5,624.23	1.85				101.5
5,588.53				05/02/07	35.70	33.85	
5,586.49				08/14/07	37.74	35.89	
5,586.68				10/10/07	37.55	35.70	
5,587.76				03/26/08	36.47	34.62	
5,587.59				06/24/08	36.64	34.79	
5,587.35				08/26/08	36.88	35.03	
5,586.84				10/14/08	37.39	35.54	
5,586.17				03/03/09	38.06	36.21	
5,585.74				06/24/09	38.49	36.64	
5,585.54				09/10/09	38.69	36.84	
5,585.77				12/11/09	38.46	36.61	
5,585.88				03/11/10	38.35	36.50	
5,586.35				05/11/10	37.88	36.03	
5,585.68				09/29/10	38.55	36.70	
5,585.09				12/21/10	39.14	37.29	
5,584.65				02/28/11	39.58	37.73	
5,584.76				06/21/11	39.47	37.62	
5,584.32				09/20/11	39.91	38.06	
5,584.22				12/21/11	40.01	38.16	
5,577.07				03/27/12	47.16	45.31	
5,577.05				06/28/12	47.18	45.33	
5,583.14				09/27/12	41.09	39.24	
5,577.10				12/28/12	47.13	45.28	
5,582.71				03/28/13	41.52	39.67	
5,582.25				06/27/13	41.98	40.13	
5,582.24				09/27/13	41.99	40.14	
5,582.12				12/20/13	42.11	40.26	
5,581.67				03/27/14	42.56	40.71	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,618.09	5,619.94	1.85				102.5
5,529.66				08/23/02	90.28	88.43	
5,530.66				09/11/02	89.28	87.43	
5,529.10				10/23/02	90.84	88.99	
5,530.58				11/22/02	89.36	87.51	
5,530.61				12/03/02	89.33	87.48	
5,529.74				01/09/03	90.20	88.35	
5,531.03				02/12/03	88.91	87.06	
5,531.82				03/26/03	88.12	86.27	
5,524.63				04/02/03	95.31	93.46	
5,531.54				05/01/03	88.40	86.55	
5,538.46				06/09/03	81.48	79.63	
5,539.38				07/07/03	80.56	78.71	
5,540.72				08/04/03	79.22	77.37	
5,541.25				09/11/03	78.69	76.84	
5,541.34				10/02/03	78.60	76.75	
5,541.69				11/07/03	78.25	76.40	
5,541.91				12/03/03	78.03	76.18	
5,542.44				01/15/04	77.50	75.65	
5,542.47				02/10/04	77.47	75.62	
5,542.84				03/28/04	77.10	75.25	
5,543.08				04/12/04	76.86	75.01	
5,543.34				05/13/04	76.60	74.75	
5,543.40				06/18/04	76.54	74.69	
5,544.06				07/28/04	75.88	74.03	
5,544.61				08/30/04	75.33	73.48	
5,545.23				09/16/04	74.71	72.86	
5,546.20				10/11/04	73.74	71.89	
5,547.43				11/16/04	72.51	70.66	
5,548.96				12/22/04	70.98	69.13	
5,549.02				01/18/05	70.92	69.07	
5,550.66				02/28/05	69.28	67.43	
5,551.26				03/15/05	68.68	66.83	
5,552.23				04/26/05	67.71	65.86	
5,552.87				05/24/05	67.07	65.22	
5,553.42				06/30/05	66.52	64.67	
5,554.00				07/29/05	65.94	64.09	
5,555.21				09/12/05	64.73	62.88	
5,558.13				12/07/05	61.81	59.96	
5,562.93				03/08/06	57.01	55.16	
5,564.39				06/13/06	55.55	53.70	
5,562.09				07/18/06	57.85	56.00	
5,565.49				11/07/06	54.45	52.60	
5571.08				02/27/07	48.86	47.01	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,618.09	5,619.94	1.85				102.5
5,570.63				05/02/07	49.31	47.46	
5,565.24				08/14/07	54.70	52.85	
5,565.83				10/10/07	54.11	52.26	
5,569.29				03/26/08	50.65	48.80	
5,570.00				06/24/08	49.94	48.09	
5,570.41				08/26/08	49.53	47.68	
5,570.64				10/14/08	49.30	47.45	
5,570.43				03/03/09	49.51	47.66	
5,570.56				06/24/09	49.38	47.53	
5,570.42				09/10/09	49.52	47.67	
5,571.15				12/11/09	48.79	46.94	
5,572.01				03/11/10	47.93	46.08	
5,572.88				05/11/10	47.06	45.21	
5,573.17				09/29/10	46.77	44.92	
5,573.14				12/21/10	46.80	44.95	
5,573.10				02/28/11	46.84	44.99	
5,573.75				06/21/11	46.19	44.34	
5,573.63				09/20/11	46.31	44.46	
5,573.94				12/21/11	46.00	44.15	
5,572.79				03/27/12	47.15	45.30	
5,572.77				06/28/12	47.17	45.32	
5,573.04				09/27/12	46.90	45.05	
5,572.79				12/28/12	47.15	45.30	
5,573.03				03/28/13	46.91	45.06	
5,572.44				06/27/13	47.50	45.65	
5,573.46				09/27/13	46.48	44.63	
5,573.46				12/20/13	46.48	44.63	
5,572.90				03/27/14	47.04	45.19	

Water (WL) Land (LSD) Point (MP) Length Of Riser (L) Date Of Monitoring Water (blw.MP) Water (blw.LSD) Well (MP) Well (MP) Significant (MP) Well (MP) Well (MP) Name (MP) Well (MP) <th></th>	
Water Elevation (WL) Land (LSD) Point (MP) Length Of Riser (L) Date Of Monitoring (blw.MP) Water (blw.LSD) Well (blw.LSD)	
Elevation (WL) Surface (LSD) Elevation (MP) Length Of Riser (L) Date Of Monitoring (blw.MP) Water (blw.LSD) Depth Of Well 5,518.90 5,518.90 08/23/02 93.87 92.02 5,519.28 09/11/02 93.49 91.64 5,519.95 10/23/02 92.82 90.97 5,520.32 11/22/02 92.45 90.60 5,520.42 12/03/02 92.35 90.50 5,520.70 01/09/03 92.07 90.22 5,520.89 02/12/03 91.88 90.03 5,521.12 03/26/03 91.65 89.80	
(WL) (LSD) (MP) Riser (L) Monitoring (blw.MP) (blw.LSD) Well 5,610.92 5,612.77 1.85 93 5,518.90 08/23/02 93.87 92.02 5,519.28 09/11/02 93.49 91.64 5,519.95 10/23/02 92.82 90.97 5,520.32 11/22/02 92.45 90.60 5,520.42 12/03/02 92.35 90.50 5,520.70 01/09/03 92.07 90.22 5,520.89 02/12/03 91.88 90.03 5,521.12 03/26/03 91.65 89.80	P
5,610.92 5,612.77 1.85 93 5,518.90 08/23/02 93.87 92.02 5,519.28 09/11/02 93.49 91.64 5,519.95 10/23/02 92.82 90.97 5,520.32 11/22/02 92.45 90.60 5,520.42 12/03/02 92.35 90.50 5,520.70 01/09/03 92.07 90.22 5,520.89 02/12/03 91.88 90.03 5,521.12 03/26/03 91.65 89.80	
5,518.90 08/23/02 93.87 92.02 5,519.28 09/11/02 93.49 91.64 5,519.95 10/23/02 92.82 90.97 5,520.32 11/22/02 92.45 90.60 5,520.42 12/03/02 92.35 90.50 5,520.70 01/09/03 92.07 90.22 5,520.89 02/12/03 91.88 90.03 5,521.12 03/26/03 91.65 89.80	_
5,519.28 09/11/02 93.49 91.64 5,519.95 10/23/02 92.82 90.97 5,520.32 11/22/02 92.45 90.60 5,520.42 12/03/02 92.35 90.50 5,520.70 01/09/03 92.07 90.22 5,520.89 02/12/03 91.88 90.03 5,521.12 03/26/03 91.65 89.80	-
5,519.95 10/23/02 92.82 90.97 5,520.32 11/22/02 92.45 90.60 5,520.42 12/03/02 92.35 90.50 5,520.70 01/09/03 92.07 90.22 5,520.89 02/12/03 91.88 90.03 5,521.12 03/26/03 91.65 89.80	
5,520.32 11/22/02 92.45 90.60 5,520.42 12/03/02 92.35 90.50 5,520.70 01/09/03 92.07 90.22 5,520.89 02/12/03 91.88 90.03 5,521.12 03/26/03 91.65 89.80	
5,520.42 12/03/02 92.35 90.50 5,520.70 01/09/03 92.07 90.22 5,520.89 02/12/03 91.88 90.03 5,521.12 03/26/03 91.65 89.80	
5,520.70 01/09/03 92.07 90.22 5,520.89 02/12/03 91.88 90.03 5,521.12 03/26/03 91.65 89.80	
5,520.89 02/12/03 91.88 90.03 5,521.12 03/26/03 91.65 89.80	
5,521.12 03/26/03 91.65 89.80	
·	
5,521.24 05/01/03 91.53 89.68	
5,521.34 06/09/03 91.43 89.58	
5,521.36 07/07/03 91.41 89.56	
5,521.35 08/04/03 91.42 89.57	
5,521.30 09/11/03 91.47 89.62	
5,521.35 10/02/03 91.42 89.57	
5,521.36 11/07/03 91.41 89.56	
5,521.16 12/03/03 91.61 89.76	
5,521.29 01/15/04 91.48 89.63	
5,521.36 02/10/04 91.41 89.56	
5,521.46 03/28/04 91.31 89.46	
5,521.54 04/12/04 91.23 89.38	
5,521.59 05/13/04 91.18 89.33	
5,521.69 06/18/04 91.08 89.23	
5,521.71 07/28/04 91.06 89.21	
5,521.76 08/30/04 91.01 89.16	
5,521.77 09/16/04 91.00 89.15	
5,521.79 10/11/04 90.98 89.13	
5,521.80 11/16/04 90.97 89.12	
5,521.82 12/22/04 90.95 89.10	
5,521.82 01/18/05 90.95 89.10	
5,521.86 02/28/05 90.91 89.06	
5,521.85 03/15/05 90.92 89.07	
5,521.91 04/26/05 90.86 89.01	
5,521.93 05/24/05 90.84 88.99	
5,521.94 06/30/05 90.83 88.98	
5,521.84 07/29/05 90.93 89.08	
5,521.99 09/12/05 90.78 88.93	
5,522.04 12/07/05 90.73 88.88	
5,522.05 03/08/06 90.72 88.87	
5,522.27 06/13/06 90.50 88.65	
5,521.92 07/18/06 90.85 89.00	
5,520.17 11/07/06 92.60 90.75	
5522.24 02/27/07 90.53 88.68	

Water Elevation (WL) Land (LSD) Point (LSD) Length Of Riser (L) Date Of Monitoring Water (blw.MP) Water (blw.LSD) Well (blw.LSD) Well (blw.LSD) 93 5,522.47 5,520.74 08/14/07 92.03 90.18)f
Elevation (WL) Surface (LSD) Elevation (MP) Length Of Riser (L) Date Of Monitoring (blw.MP) Water (blw.LSD) Well (blw.LSD) 5,522.47 5,610.92 5,612.77 1.85 93	Of
(WL) (LSD) (MP) Riser (L) Monitoring (blw.MP) (blw.LSD) Well 5,610.92 5,612.77 1.85 93 5,522.47 05/02/07 90.30 88.45)f — —
5,610.92 5,612.77 1.85 93 5,522.47 05/02/07 90.30 88.45	-
5,522.47 05/02/07 90.30 88.45	
· _	
5 520 74 08/14/07 02 03 00 18	
5,520.17	
5,518.13 10/10/07 94.64 92.79	
5,522.85 03/26/08 89.92 88.07	
5,522.91 06/24/08 89.86 88.01	
5,523.01 08/26/08 89.76 87.91	
5,522.96 10/14/08 89.81 87.96	
5,523.20 03/03/09 89.57 87.72	
5,523.33 06/24/09 89.44 87.59	
5,523.47 09/10/09 89.30 87.45	
5,523.54 12/11/09 89.23 87.38	
5,522.98 03/11/10 89.79 87.94	
5,524.01 05/11/10 88.76 86.91	
5,524.37 09/29/10 88.40 86.55	
5,524.62 12/21/10 88.15 86.30	
5,524.78 02/28/11 87.99 86.14	
5,525.23 06/21/11 87.54 85.69	
5,525.45 09/20/11 87.32 85.47	
5,525.72 12/21/11 87.05 85.20	
5,525.88 03/27/12 86.89 85.04	
5,525.97 06/28/12 86.80 84.95	
5,526.32 09/27/12 86.45 84.60	
5,525.88 12/28/12 86.89 85.04	
5,526.91 03/28/13 85.86 84.01	
5,526.99 06/27/13 85.78 83.93	
5,527.68 09/27/13 85.09 83.24	
5,528.19 12/20/13 84.58 82.73	
5,528.75 03/27/14 84.02 82.17	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,624.15	5,625.45	1.30				121.33
5,574.75				08/23/02	50.70	49.40	
5,574.97				09/11/02	50.48	49.18	
5,575.10				10/23/02	50.35	49.05	
5,574.99				11/22/02	50.46	49.16	
5,575.28				12/03/02	50.17	48.87	
5,575.41				01/09/03	50.04	48.74	
5,575.43				02/12/03	50.02	48.72	
5,575.63				03/26/03	49.82	48.52	
5,575.91				04/02/03	49.54	48.24	
5,575.81				05/01/03	49.64	48.34	
5,572.36				06/09/03	53.09	51.79	
5,570.70				07/07/03	54.75	53.45	
5,570.29				08/04/03	55.16	53.86	
5,560.94				09/11/03	64.51	63.21	
5,560.63				10/02/03	64.82	63.52	
5,560.56				11/07/03	64.89	63.59	
5,564.77				12/03/03	60.68	59.38	
5,570.89				01/15/04	54.56	53.26	
5,572.55				02/10/04	52.90	51.60	
5,574.25				03/28/04	51.20	49.90	
5,574.77				04/12/04	50.68	49.38	
5,575.53				05/13/04	49.92	48.62	
5,575.59				06/18/04	49.86	48.56	
5,576.82				07/28/04	48.63	47.33	
5,527.47				09/16/04	97.98	96.68	
5,553.97				11/16/04	71.48	70.18	
5,562.33				12/22/04	63.12	61.82	
5,550.00				01/18/05	75.45	74.15	
5,560.02				04/26/05	65.43	64.13	
5,546.11				05/24/05	79.34	78.04	
5,556.71				06/30/05	68.74	67.44	
5,554.95				07/29/05	70.50	69.20	
5,555.48				09/12/05	69.97	68.67	
5,551.09				12/07/05	74.36	73.06	
5,552.85				03/08/06	72.60	71.30	
5,554.30				06/13/06	71.15	69.85	
5,554.87				07/18/06	70.58	69.28	
5,550.88				11/07/06	74.57	73.27	
5558.77				02/27/07	66.68	65.38	
5,548.54				05/02/07	76.91	75.61	
5,551.33				10/10/07	74.12	72.82	
5,545.56				03/26/08	79.89	78.59	
5,545.56				06/25/08	79.89	78.59	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,624.15	5,625.45	1.30				121.33
5,545.82				08/26/08	79.63	78.33	
5,545.64				10/14/08	79.81	78.51	
5,544.45				03/03/09	81.00	79.70	
5,545.32				06/24/09	80.13	78.83	
5,544.61				09/10/09	80.84	79.54	
5,549.33				12/11/09	76.12	74.82	
5,543.78				03/11/10	81.67	80.37	
5,545.61				05/11/10	79.84	78.54	
5,547.43				09/29/10	78.02	76.72	
5,544.14				12/21/10	81.31	80.01	
5,546.77				02/28/11	78.68	77.38	
5,537.60				06/21/11	87.85	86.55	
5,551.46				09/20/11	73.99	72.69	
5,549.12				12/21/11	76.33	75.03	
5,557.30				03/27/12	68.15	66.85	
5,557.38				06/28/12	68.07	66.77	
5,550.86				09/27/12	74.59	73.29	
5,557.30				12/28/12	68.15	66.85	
5,565.37				03/28/13	60.08	58.78	
5,563.55				06/27/13	61.90	60.60	
5,560.12				09/27/13	65.33	64.03	
5,559.27				12/20/13	66.18	64.88	
5,556.65				03/27/14	68.80	67.50	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
(VIL)	5,622.19	5,624.02	1.83	Withitting	(DIW.IVII)	(DIW.LSD)	142
5,562.91	3,022.19	3,024.02	1.03	08/23/02	61.11	59.28	142
5,563.45				09/11/02	60.57	58.74	
				10/23/02	60.27	58.44	
5,563.75 5,563.68				11/22/02	60.27	58.51	
				12/03/02	60.34	58.51	
5,563.68				01/09/03	59.86	58.03	
5,564.16							
5,564.25				02/12/03	59.77	57.94 57.66	
5,564.53				03/26/03	59.49	57.66	
5,564.46				04/02/03	59.56	57.73	
5,564.79				05/01/03	59.23	57.40	
5,564.31				06/09/03	59.71	57.88	
5,563.29				07/07/03	60.73	58.90	
5,562.76				08/04/03	61.26	59.43	
5,561.73				09/11/03	62.29	60.46	
5,561.04				10/02/03	62.98	61.15	
5,560.39				11/07/03	63.63	61.80	
5,559.79				12/03/03	64.23	62.40	
5,561.02				01/15/04	63.00	61.17	
5,561.75				02/10/04	62.27	60.44	
5,562.98				03/28/04	61.04	59.21	
5,563.29				04/12/04	60.73	58.90	
5,564.03				05/13/04	59.99	58.16	
5,564.09				06/18/04	59.93	58.10	
5,565.08				07/28/04	58.94	57.11	
5,564.56				08/30/04	59.46	57.63	
5,563.55				09/16/04	60.47	58.64	
5,561.79				10/11/04	62.23	60.40	
5,560.38				11/16/04	63.64	61.81	
5,559.71				12/22/04	64.31	62.48	
5,559.14				01/18/05	64.88	63.05	
5,558.65				02/28/05	65.37	63.54	
5,558.54				03/15/05	65.48	63.65	
5,558.22				04/26/05	65.80	63.97	
5,558.54				05/24/05	65.48	63.65	
5,559.24				06/30/05	64.78	62.95	
5,559.38				07/29/05	64.64	62.81	
5,559.23				09/12/05	64.79	62.96	
5,557.67				12/07/05	66.35	64.52	
5,557.92				03/08/06	66.10	64.27	
5,558.47				06/13/06	65.55	63.72	
5,558.42				07/18/06	65.60	63.77	
5,558.09				11/07/06	65.93	64.10	
5557.34				02/27/07	66.68	64.85	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,622.19	5,624.02	1.83				142
5,547.11				05/02/07	76.91	75.08	
5,558.52				08/14/07	65.50	63.67	
5,559.02				10/10/07	65.00	63.17	
5,561.04				03/26/08	62.98	61.15	
5,560.06				06/24/08	63.96	62.13	
5,559.32				08/26/08	64.70	62.87	
5,558.89				10/14/08	65.13	63.30	
5,558.40				03/03/09	65.62	63.79	
5,558.32				06/24/09	65.70	63.87	
5,558.03				09/10/09	65.99	64.16	
5,558.81				12/11/09	65.21	63.38	
5,559.80				03/11/10	64.22	62.39	
5,559.85				05/11/10	64.17	62.34	
5,560.54				09/29/10	63.48	61.65	
5,558.65				12/21/10	65.37	63.54	
5,559.26				02/28/11	64.76	62.93	
5,560.48				06/21/11	63.54	61.71	
5,561.52				09/20/11	62.50	60.67	
5,562.95				12/21/11	61.07	59.24	
5,563.76				03/27/12	60.26	58.43	
5,563.90				06/28/12	60.12	58.29	
5,564.65				09/27/12	59.37	57.54	
5,563.77				12/28/12	60.25	58.42	
5,564.74				03/28/13	59.28	57.45	
5,563.66				06/27/13	60.36	58.53	
5,562.27				09/27/13	61.75	59.92	
5,562.17				12/20/13	61.85	60.02	
5,561.17				03/27/14	62.85	61.02	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.41	5,625.24	1.83				130.6
5,542.17				08/23/02	83.07	81.24	
5,542.39				09/11/02	82.85	81.02	
5,542.61				10/23/02	82.63	80.80	
5,542.49				11/22/02	82.75	80.92	
5,542.82				12/03/02	82.42	80.59	
5,543.03				01/09/03	82.21	80.38	
5,543.04				02/12/03	82.20	80.37	
5,543.41				03/26/03	81.83	80.00	
5,543.69				04/02/03	81.55	79.72	
5,543.77				05/01/03	81.47	79.64	
5,544.01				06/09/03	81.23	79.40	
5,544.05				07/07/03	81.19	79.36	
5,543.99				08/04/03	81.25	79.42	
5,544.17				09/11/03	81.07	79.24	
5,544.06				10/02/03	81.18	79.35	
5,544.03				11/07/03	81.21	79.38	
5,543.94				12/03/03	81.30	79.47	
5,543.98				01/15/04	81.26	79.43	
5,543.85				02/10/04	81.39	79.56	
5,544.05				03/28/04	81.19	79.36	
5,544.33				04/12/04	80.91	79.08	
5,544.55				05/13/04	80.69	78.86	
5,544.59				06/18/04	80.65	78.82	
5,545.08				07/28/04	80.16	78.33	
5,545.26				08/30/04	79.98	78.15	
5,545.48				09/16/04	79.76	77.93	
5,545.61				10/11/04	79.63	77.80	
5,545.46				11/16/04	79.78	77.95	
5,545.66				12/22/04	79.58	77.75	
5,545.33				01/18/05	79.91	78.08	
5,545.51				02/28/05	79.73	77.90	
5,545.57				03/15/05	79.67	77.84	
5,545.46				04/26/05	79.78	77.95	
5,545.45				05/24/05	79.79	77.96	
5,545.33				06/30/05	79.91	78.08	
5,545.16				07/29/05	80.08	78.25	
5,545.54				09/12/05	79.70	77.87	
5,545.77				12/07/05	79.47	77.64	
5,546.09				03/08/06	79.15	77.32	
5,545.94				06/13/06	79.30	77.47	
5,545.94				07/18/06	79.30	77.47	
5,546.24				11/07/06	79.00	77.17	
5546.81				02/27/07	78.43	76.6	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.41	5,625.24	1.83				130.6
5546.56				05/02/07	78.68	76.85	
5546.81				08/15/07	78.43	76.6	
5546.96				10/10/07	78.28	76.45	
5547.9				03/26/08	77.34	75.51	
5548.08				06/25/08	77.16	75.33	
5548.42				08/26/08	76.82	74.99	
5548.05				10/14/08	77.19	75.36	
5548.29				03/03/09	76.95	75.12	
5548.09				06/24/09	77.15	75.32	
5547.79				09/10/09	77.45	75.62	
5548.09				12/11/09	77.15	75.32	
5,548.50				03/11/10	76.74	74.91	
5,548.89				05/11/10	76.35	74.52	
5,548.83				09/29/10	76.41	74.58	
5,548.97				12/21/10	76.27	74.44	
5,548.68				02/28/11	76.56	74.73	
5,549.33				06/21/11	75.91	74.08	
5,549.19				09/20/11	76.05	74.22	
5,550.06				12/21/11	75.18	73.35	
5,550.31				03/27/12	74.93	73.10	
5,550.32				06/28/12	74.92	73.09	
5,550.88				09/27/12	74.36	72.53	
5,550.29				12/28/12	74.95	73.12	
5,551.54				03/28/13	73.70	71.87	
5,550.34				06/27/13	74.90	73.07	
5,551.35				09/27/13	73.89	72.06	
5,551.33				12/20/13	73.91	72.08	
5,550.97				03/27/14	74.27	72.44	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,639.13	5,641.28	2.15				137.5
5,585.13				08/23/02	56.15	54.00	
5,585.41				09/11/02	55.87	53.72	
5,585.47				10/23/02	55.81	53.66	
5,585.40				11/22/02	55.88	53.73	
5,585.68				12/03/02	55.60	53.45	
5,585.90				01/09/03	55.38	53.23	
5,590.79				02/12/03	50.49	48.34	
5,586.18				03/26/03	55.10	52.95	
5,586.36				04/02/03	54.92	52.77	
5,586.24				05/01/03	55.04	52.89	
5,584.93				06/09/03	56.35	54.20	
5,584.46				07/07/03	56.82	54.67	
5,584.55				08/04/03	56.73	54.58	
5,584.01				09/11/03	57.27	55.12	
5,583.67				10/02/03	57.61	55.46	
5,583.50				11/07/03	57.78	55.63	
5,584.08				12/03/03	57.20	55.05	
5,585.45				01/15/04	55.83	53.68	
5,585.66				02/10/04	55.62	53.47	
5,586.13				03/28/04	55.15	53.00	
5,586.39				04/12/04	54.89	52.74	
5,586.66				05/13/04	54.62	52.47	
5,586.77				06/18/04	54.51	52.36	
5,587.35				07/28/04	53.93	51.78	
5,586.34				08/30/04	54.94	52.79	
5,585.85				09/16/04	55.43	53.28	
5,585.22				10/11/04	56.06	53.91	
5,584.70				11/16/04	56.58	54.43	
5,584.81				12/22/04	56.47	54.32	
5,584.68				01/18/05	56.60	54.45	
5,585.02				02/28/05	56.26	54.11	
5,585.25				03/15/05	56.03	53.88	
5,586.31				04/26/05	54.97	52.82	
5,586.97				05/24/05	54.31	52.16	
5,586.58				06/30/05	54.70	52.55	
5,586.10				07/29/05	55.18	53.03	
5,586.05				09/12/05	55.23	53.08	
5,585.86				12/07/05	55.42	53.27	
5,587.13				03/08/06	54.15	52.00	
5,585.93				06/13/06	55.35	53.20	
5,585.40				07/18/06	55.88	53.73	
5,585.38				11/07/06	55.90	53.75	
5585.83				02/27/07	55.45	53.30	

				Total or		
	Measuring			Measured	Total	
Land	Point			Depth to	Depth to	Total
Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
5,639.13	5,641.28	2.15				137.5
			05/02/07	56.13	53.98	
			06/24/08	54.81	52.66	
			08/26/08	54.98	52.83	
			10/14/08	56.07	53.92	
			03/03/09	56.81	54.66	
			06/24/09	56.93	54.78	
			09/10/09	57.4	55.25	
			12/11/09	56.85	54.70	
			03/11/10	56.02	53.87	
			05/11/10	57.11	54.96	
			09/29/10	57.67	55.52	
			12/21/10	36.99	34.84	
			02/28/11	57.72	55.57	
			06/21/11	56.55	54.40	
			09/20/11	56.57	54.42	
			12/21/11	56.25	54.10	
			03/27/12	56.65	54.50	
			06/28/12	56.61	54.46	
			09/27/12	57.30	55.15	
			12/28/12	56.63	54.48	
			03/28/13	58.40	56.25	
			06/27/13	56.65	54.50	
			09/27/13	59.90	57.75	
			12/20/13	61.57	59.42	
			03/27/14	62.02	59.87	
	Surface (LSD)	Land Point Surface Elevation (LSD) (MP)	Land Point Surface Elevation Length Of (LSD) (MP) Riser (L)	Land Surface (LSD) Elevation (MP) Length Of Riser (L) Date Of Monitoring 5,639.13 5,641.28 2.15 05/02/07 06/24/08 08/26/08 10/14/08 08/26/08 10/14/08 03/03/09 06/24/09 09/10/09 12/11/09 03/11/10 05/11/10 05/11/10 05/11/10 05/11/10 05/11/10 05/11/10 09/29/10 12/21/10 02/28/11 06/21/11 09/20/11 12/21/11 09/20/11 12/21/11 03/27/12 06/28/12 09/27/12 12/28/12 03/28/13 06/27/13 09/27/13 12/20/13	Land Surface (LSD) Elevation (MP) Length Of Riser (L) Date Of Monitoring (MP) Water (LSD) Water (LSD) Monitoring (MP) Ser (LSS) Ser	Land Surface (LSD) Point (MP) Length Of Riser (L) Date Of Water (DSD) Water (DSD)

		V	Vhite Mesa	Mill - Wel	1 TW4-19		
					Total or		
		Measuring			Measured		
Water	Land	Point			Depth to	Total Depth	
Elevation	Surface	Elevation	Length Of	Date Of	Water	to Water	Total Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,629.53	5,631.39	1.86				121.33
5,581.88				08/23/02	49.51	47.65	
5,582.14				09/11/02	49.25	47.39	
5,582.06				10/23/02	49.33	47.47	
5,582.07				11/22/02	49.32	47.46	
5,582.16				12/03/02	49.23	47.37	
5,582.28				01/09/03	49.11	47.25	
5,582.29				02/21/03	49.10	47.24	
5,582.74				03/26/03	48.65	46.79	
5,582.82				04/02/03	48.57	46.71	
5,548.47				05/01/03	82.92	81.06	
5,564.76				06/09/03	66.63	64.77	
5,562.53				07/07/03	68.86	67.00	
5,564.10				08/04/03	67.29	65.43	
5,566.01				08/30/04	65.38	63.52	
5,555.16				09/16/04	76.23	74.37	
5,549.80				10/11/04	81.59	79.73	
5,546.04				11/16/04	85.35	83.49	
5,547.34				12/22/04	84.05	82.19	
5,548.77				01/18/05	82.62	80.76	
5,551.18				02/28/05	80.21	78.35	
5,556.81				03/15/05	74.58	72.72	
5,562.63				04/26/05	68.76	66.90	
5,573.42				05/24/05	57.97	56.11	
5,552.94				07/29/05	78.45	76.59	
5,554.00				09/12/05	77.39	75.53	
5,555.98				12/07/05	75.41	73.55	
5,552.00				03/08/06	79.39	77.53	
5,545.74				06/13/06	85.65	83.79	
5,544.06				07/18/06	87.33	85.47	
5,548.81			78	11/07/06	82.58	80.72	
5543.59				02/27/07	87.80	85.94	
5544.55				05/02/07	86.84	84.98	
5558.97				08/15/07	72.42	70.56	
5559.73				10/10/07	71.66	69.8	
5569.26				03/26/08	62.13	60.27	
5535.47				06/25/08	95.92	94.06	
5541.41				08/26/08	89.98	88.12	
5558.45				10/14/08	72.94	71.08	
5536.9				03/03/09	94.49	92.63	
5547.76				06/24/09	83.63	81.77	
5561.48				09/10/09	69.91	68.05	
5548.14				12/11/09	83.25	81.39	
5,570.58				03/11/10	60.81	58.95	
-,				02.21120	00.01	22.72	

Water Elevation (WL)	Land Surface (LSD) 5,629.53	Measuring Point Elevation (MP) 5.631,39	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well 121.33
5,561.35				05/11/10	70.04	68.18	
5,535.26				09/29/10	96.13	94.27	
5,568.40				12/21/10	62.99	61.13	
5,550.36				02/28/11	81.03	79.17	
5,570.41				06/21/11	60.98	59.12	
5,567.84				09/20/11	63.55	61.69	

12/21/11

03/27/12

06/28/12

09/27/12

12/28/12

03/28/13

06/27/13

09/27/13

12/20/13

03/27/14

60.07

58.99

59.00

59.99

63.18

58.88

65.39

63.02

66.84

66.28

58.21

57.13

57.14

58.13

61.32

57.0263.53

61.16

64.98

64.42

5,571.32

5,572.40

5,572.39

5,571.40

5,568.21 5,572.51

5,566.00

5,568.37 5,564.55

5,565.11

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,628.52	5,629.53	1.01				106.0
5,565.70				07/29/05	63.83	62.82	
5,546.53				08/30/05	83.00	81.99	
5,540.29				09/12/05	89.24	88.23	
5,541.17				12/07/05	88.36	87.35	
5,540.33				03/08/06	89.20	88.19	
5,530.43				06/13/06	99.10	98.09	
5,569.13				07/18/06	60.40	59.39	
5,547.95				11/07/06	81.58	80.57	
5,549.25				02/27/07	80.28	79.27	
5,550.58				05/02/07	78.95	77.94	
5,563.60				08/14/07	65.93	64.92	
5,555.85				10/10/07	73.68	72.67	
5,569.10				03/26/08	60.43	59.42	
5,560.00				06/25/08	69.53	68.52	
5,539.64				08/26/08	89.89	88.88	
5,539.51				10/14/08	90.02	89.01	
5,553.00				03/03/09	76.53	75.52	
5,534.18				06/24/09	95.35	94.34	
5,558.39				09/10/09	71.14	70.13	
5,560.99				12/11/09	68.54	67.53	
5,564.09				03/11/10	65.44	64.43	
5,564.22				05/11/10	65.31	64.30	
5,560.33				09/29/10	69.20	68.19	
5,561.35				12/21/10	68.18	67.17	
5,560.18				02/28/11	69.35	68.34	
5,576.23				06/21/11	53.30	52.29	
5,548.50				09/20/11	81.03	80.02	
5,558.58				12/21/11	70.95	69.94	
5,567.73				03/27/12	61.80	60.79	
5,567.77				06/28/12	61.76	60.75	
5,569.58				09/27/12	59.95	58.94	4
5,572.58				12/28/12	56.95	55.94	
5,571.52				03/28/13	58.01	57.00	
5,569.93				06/27/13	59.60	58.59	
5,568.53				09/27/13	61.00	59.99	
5,559.44				12/20/13	70.09	69.08	
5,562.17				03/27/14	67.36	66.35	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,638.20	5,639.35	1.15			, , , , , , , , , , , , , , , , , , ,	120.92
5,582.98				07/29/05	56.37	55.22	
5,583.43				08/30/05	55.92	54.77	
5,581.87				09/12/05	57.48	56.33	
5,580.50				12/07/05	58.85	57.70	
5,583.64				03/08/06	55.71	54.56	
5,580.55				06/13/06	58.80	57.65	
5,578.95				07/18/06	60.40	59.25	
5,578.47				11/07/06	60.88	59.73	
5,579.53				02/27/07	59.82	58.67	
5,578.07				05/02/07	61.28	60.13	
5,583.41				08/15/07	55.94	54.79	
5,583.45				10/10/07	55.90	54.75	
5,586.47				03/26/08	52.88	51.73	
5,579.16				06/24/08	60.19	59.04	
5,579.92				08/26/08	59.43	58.28	
5,577.37				10/14/08	61.98	60.83	
5,578.00				03/10/09	61.35	60.20	
5,580.14				06/24/09	59.21	58.06	
5,578.72				09/10/09	60.63	59.48	
5,579.99				12/11/09	59.36	58.21	
5,582.81				03/11/10	56.54	55.39	
5,582.23				05/11/10	57.12	55.97	
5,576.60				09/29/10	62.75	61.60	
5,581.14				12/21/10	58.21	57.06	
5,579.53				02/28/11	59.82	58.67	
5,584.17				06/21/11	55.18	54.03	
5,584.80				09/20/11	54.55	53.40	
5,585.68				12/21/11	53.67	52.52	
5,585.24				03/27/12	54.11	52.96	
5,585.26				06/28/12	54.09	52.94	
5,585.16				09/27/12	54.19	53.04	
5,585.25				12/28/12	54.10	52.95	
5,582.84				03/28/13	56.51	55.36	
5,581.79				06/27/13	57.56	56.41	
5,580.89				09/27/13	58.46	57.31	
5,577.45				12/20/13	61.90	60.75	
5,576.01				03/27/14	63.34	62.19	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,627.83	5,629.00	1.17				113.5
,							
5,571.89				07/29/05	57.11	55.94	
5,572.20				08/30/05	56.80	55,63	
5,572.08				09/12/05	56.92	55.75	
5,571.61				12/07/05	57.39	56.22	
5,571.85				03/08/06	57.15	55.98	
5,571.62				06/13/06	57.38	56.21	
5,571.42				07/18/06	57.58	56.41	
5,571.02				11/07/06	57.98	56.81	
5571.24				02/27/07	57.76	56.59	
5,570.75				06/29/07	58.25	57.08	
5,571.82				08/14/07	57.18	56.01	
5,571.99				10/10/07	57.01	55.84	
5,573.05				03/26/08	55.95	54.78	
5,573.04				06/24/08	55.96	54.79	
5,573.04				08/26/08	55.96	54.79	
5,573.02				10/14/08	55.98	54.81	
5,573.19				03/10/09	55.81	54.64	
5,573.32				06/24/09	55.68	54.51	
5,573.17				09/10/09	55.83	54.66	
5,573.52				12/11/09	55.48	54.31	
5,573.88				03/11/10	55.12	53.95	
5,574.29				05/11/10	54.71	53.54	
5,574.88				09/29/10	54.12	52.95	
5,574.44				12/21/10	54.56	53.39	
5,574.49				02/28/11	54.51	53.34	
5,574.97				06/21/11	54.03	52.86	
5,575.06				09/20/11	53.94	52.77	
5,575.69				12/21/11	53.31	52.14	
5,575.61				03/27/12	53.39	52.22	
5,575.62				06/28/12	53.38	52.21	
5,575.90				09/27/12	53.10	51.93	
5,575.59				12/28/12	53.41	52.24	
5,573.50				03/28/13	55.50	54.33	
5,572.45				06/27/13	56.55	55.38	
5,572.25				09/27/13	56.75	55.58	
5,569.93				12/20/13	59.07	57.90	
5,569.36				03/27/14	59.64	58.47	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,605.77	5,607.37	1.60				113.5
5,538.89				09/13/07	68.48	66.88	
5,538.80				10/10/07	68.57	66.97	
5,539.25				11/30/07	68.12	66.52	
5,539.49				12/11/07	67.88	66.28	
5,539.19				01/08/08	68.18	66.58	
5,539.44				02/18/08	67.93	66.33	
5,539.54				03/26/08	67.83	66.23	
5,539.71				04/23/08	67.66	66.06	
5539.48				05/30/08	67.89	66.29	
5,539.53				06/24/08	67.84	66.24	
5,539.44				07/16/08	67.93	66.33	
5,539.68				08/26/08	67.69	66.09	
5,541.18				09/10/08	66.19	64.59	
5,539.57				10/14/08	67.80	66.20	
5,539.29				11/26/08	68.08	66.48	
5,539.55				12/29/08	67.82	66.22	
5,540.15				01/26/09	67.22	65.62	
5,539.74				02/24/09	67.63	66.03	
5,539.86				03/06/09	67.51	65.91	
5,539.72				04/07/09	67.65	66.05	
5,539.84				05/29/09	67.53	65.93	
5,540.12				06/30/09	67.25	65.65	
5,540.12				07/31/09	67.25	65.65	
5,540.27				08/31/09	67.10	65.50	
5,540.13				09/10/09	67.24	65.64	
5,540.64				12/11/09	66.73	65.13	
5,541.15				03/11/10	66.22	64.62	
5,541.61				05/11/10	65.76	64.16	
5,541.47				09/29/10	65.90	64.30	
5,541.54				12/21/10	65.83	64.23	
5,541.54				02/28/11	65.83	64.23	
5,541.98				06/21/11	65.39	63.79	
5,541.90				09/20/11	65.47	63.87	
5,542.58				12/21/11	64.79	63.19	
5,542.59				03/27/12	64.78	63.18	
5,542.61				06/28/12	64.76	63.16	
5,542.92				09/27/12	64.45	62.85	
5,542.61				12/28/12	64.76	63.16	
5,543.48				03/28/13	63.89	62.29	
5,543.23				06/27/13	64.14	62.54	
5,543.12				09/27/13	64.25	62.65	
5,542.96				12/20/13	64.41	62.81	
5,574.70				12/20/13	07.71	02.01	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,605.77	5,607.37	1.60				113.5
5,542,35				03/27/14	65.02	63.42	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,625.70	5,627.83	2.13				113.5
5,570.61				09/13/07	57.22	55.09	
5,570.53				10/10/07	57.30	55.17	
5,571.16				11/30/07	56.67	54.54	
5,571.30				12/11/07	56.53	54.40	
5,571.03				01/08/08	56.80	54.67	
5,571.22				02/18/08	56.61	54.48	
5,571.43				03/26/08	56.40	54.27	
5,571.68				04/23/08	56.15	54.02	
5571.52				05/30/08	56.31	54.18	
5,571.34				06/24/08	56.49	54.36	
5,571.28				07/16/08	56.55	54.42	
5,571.34				08/26/08	56.49	54.36	
5,571.23				09/10/08	56.60	54.47	
5,571.12				10/14/08	56.71	54.58	
5,570.95				11/26/08	56.88	54.75	
5,570.93				12/29/08	56.91	54.78	
5,570.92				01/26/09	56.18	54.05	
5,571.03				02/24/09	56.52	54.39	
5,571.37				03/06/09	56.46	54.33	
5,571.37				04/07/09	56.62	54.49	
				05/29/09	56.60	54.47	
5,571.23				06/30/09	56.41	54.28	
5,571.42				07/31/09	56.45	54.28	
5,571.38				08/31/09	56.35	54.32	
5,571.48				08/31/09	56.55	54.42	
5,571.28						54.42	
5,571.64				12/11/09	56.19		
5,571.86				03/11/10	55.97	53.84	
5,571.91				05/11/10	55.92	53.79	
5,572.18				09/29/10	55.65	53.52	
5,571.86				12/21/10	55.97	53.84	
5,571.78				02/28/11	56.05	53.92	
5,572.40				06/21/11	55.43	53.30	
5,572.19				09/20/11	55.64	53.51	
5,573.02				12/21/11	54.81	52.68	
5,573.03				03/27/12	54.80	52.67	
5,573.02				06/28/12	54.81	52.68	
5,573.13				09/27/12	54.70	52.57	
5,573.05				12/28/12	54.78	52.65	
5,566.53				03/28/13	61.30	59.17	
5,564.63				06/27/13	63.20	61.07	
5,570.01				09/27/13	57.82	55.69	
5,566.85				12/20/13	60.98	58.85	
5,562.33				03/27/14	65.50	63.37	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
(112)	5,627.83	5,644.91	17.08	Wolltoring	(DIW-IVII)	(DIW.LSD)	134.8
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5,027.05	5,011.51	17.00				13 110
5,601.86				09/13/07	43.05	25.97	
5,601.89				10/10/07	43.02	25.94	
5,602.57				11/30/07	42.34	25.26	
5,602.82				12/11/07	42.09	25.20	
5,601.94						25.89	
				01/08/08	42.97		
5,599.13				02/18/08	45.78 47.80	28.70	
5,597.11				03/26/08		30.72	
5,595.51				04/23/08	49.40	32.32	
5594.42				05/30/08	50.49	33.41	
5,594.26				06/24/08	50.65	33.57	
5,586.67				07/16/08	58.24	41.16	
5,594.17				08/26/08	50.74	33.66	
5,594.23				09/10/08	50.68	33.60	
5,594.12				10/14/08	50.79	33.71	
5,594.06				11/26/08	50.85	33.77	
5,594.87				12/29/08	50.04	32.96	
5,595.89				01/26/09	49.02	31.94	
5,596.27				02/24/09	48.64	31.56	
5,596.47				03/06/09	48.44	31.36	
5,596.74				04/07/09	48.17	31.09	
5,597.55				05/29/09	47.36	30.28	
5,598.11				06/30/09	46.80	29.72	
5,598.22				07/31/09	46.69	29.61	
5,598.52				08/31/09	46.39	29.31	
5,598.49				09/10/09	46.42	29.34	
5,599.48				12/11/09	45.43	28.35	
5,599.75				03/11/10	45.16	28.08	
5,599.63				05/11/10	45.28	28.20	
5,598.68				09/29/10	46.23	29.15	
5,598.66				12/21/10	46.25	29.17	
5,598.18				02/28/11	46.73	29.65	
5,598.61				06/21/11	46.30	29.22	
5,598.08				09/20/11	46.83	29.75	
5,598.23				12/21/11	46.68	29.60	
5,597.41				03/27/12	47.50	30.42	
5,597.41				06/28/12	47.50	30.42	
5,595.60				09/27/12	49.31	32.23	
5,597.41				12/28/12	47.50	30.42	
5,597.43				03/28/13	47.48	30.40	
5,587.61				06/27/13	57.30	40.22	
5,585.91				09/27/13	59.00	41.92	
5,561.00				12/20/13	83.91	66.83	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,627.83	5,644.91	17.08				134.8
5,584.79				03/27/14	60.12	43.04	

Water Elevation	Land Surface	Measuring Point Elevation	Length Of	Date Of	Total or Measured Depth to Water	Total Depth to Water	Total Depth Of
(WL)	(LSD)	(MP)	_	Monitoring			Well
	5,599.98	5,601.68	1.70				86
5,536.90 5,536.95				06/14/10 09/29/10	64.78 64.73	63.08 63.03	-
5,537.17 5,537.16				12/21/10 02/28/11	64.51 64.52	62.81 62.82	
5,537.57 5,537.59				06/21/11 09/20/11	64.11 64.09	62.41 62.39	
5,538.16 5,538.18 5538.23				12/21/11 03/27/12 06/28/12	63.52 63.50 63.45	61.82 61.80 61.75	
5,538.57 5,538.20				09/27/12 12/28/12	63.11 63.48	61.41 61.78	
5,539.13 5,539.00 5,538.94				03/28/13 06/27/13 09/27/13	62.55 62.68 62.74	60.85 60.98 61.04	
5,538.97 5,538.53				12/20/13 03/27/14	62.71 63.15	61.01 61.45	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,606.19	5,607.94	1.75				96
5,517.78 5,524.84 5,524.93 5,525.59 5,526.37 5,526.29 5,527.04 5,527.14				12/21/11 03/27/12 06/28/12 09/27/12 12/28/12 03/28/13 06/27/13 09/27/13	90.16 83.10 83.01 82.35 83.08 81.57 81.65 80.90 80.80	88.41 81.35 81.26 80.60 81.33 79.82 79.90 79.15 79.05	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,613.52	5,617.00	3.48				105
5 500 60				02/20/12	26.21	20.02	
5,580.69				03/28/13	36.31	32.83	
5,580.30				06/27/13	36.70	33.22	
5,580.35				09/27/13	36.65	33.17	
5,580.25				12/20/13	36.75	33.27	
5,579.83				03/27/14	37.17	33.69	

Water	Land	Measuring Point			Total or Measured Depth to	Total Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,602.56	5,606.04	3.48				105
5,533.98				03/28/13	72.06	68.58	
5,533.84				06/27/13	72.20	68.72	
5,534.27				09/27/13	71.77	68.29	
5,534.43				12/20/13	71.61	68.13	
5,534.32				03/27/14	71.72	68.24	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,599.33	5,602.81	3.48				105
5,524.78				03/28/13	78.03	74.55	
5,524.79 5,525.54				06/27/13 09/27/13	78.02 77.27	74.54 73.79	
5,525.81 5,525.98				12/20/13 03/27/14	77.00 76.83	73.52 73.35	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitorin g	Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,601.10	5,604.58	3.48				105
5,520.17				03/28/13	84.41	80.93	
5,520.36				06/27/13	84.22	80.74	
5,521.22				09/27/13	83.36	79.88	
5,521.81 5,522.25				12/20/13 03/27/14	82.77 82.33	79.29 78.85	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,610.20	5,611.84	1.64				113
5,564.43				09/27/13	47.41	45.77	
5,563.74				12/20/13	48.10	46.46	
5,563.24				03/27/14	48.60	46.96	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,605.20	5,606.73	1.53				84.7
5,536.70				09/27/13	70.03	68.50	
5,536.62				12/20/13	70.11	68.58	
5,536.49				03/27/14	70.24	68.71	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,601.60	5,603.34	1.74				94
5,534.04				09/27/13	69.30	67.56	
5,534.14				12/20/13	69.20	67.46	
5,533.89				03/27/14	69.45	67.71	

Tab H Laboratory Analytical Reports

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-013 Client Sample ID: MW-04_01272014

Collection Date:

1/27/2014 1425h

Received Date:

1/31/2014 919h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Dat Analy	-	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/4/2014	549h	E300.0	10.0	38.5	
Nitrate/Nitrite (as N)	mg/L		1/31/2014	1536h	E353.2	1.00	4.70	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

Client Sample ID: MW-04 01272014

1401525-013C

Collection Date:

1/27/2014 1425h

Received Date:

1/31/2014 919h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 2/1/2014 2317h

Units: µg/L

Dilution Factor: 20

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Compound			CAS umber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	20.0	1,390	~
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	1,220	1,000	122	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	1,020	1,000	102	80-128	
Surr: Dibromofluoromethane	1868-53-7	1,140	1,000	114	80-124	
Surr: Toluene-d8	2037-26-5	996	1,000	99.6	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 1/31/2014 1548h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

Compound		CAS Number	Reporting Limit	Analytical Result	Qual	
Carbon tetrachloride		56-23-5	1.00	4.15		
Chloromethane		74-87-3	1.00	< 1.00		
Methylene chloride		75-09-2	1.00	< 1.00		
0	CAR	Desuit Assessed Co	ded 0/ DEC	T toulto	Onel	-

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	59.1	50.00	118	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.2	50.00	100	80-128	
Surr: Dibromofluoromethane	1868-53-7	56.5	50.00	113	80-124	
Surr: Toluene-d8	2037-26-5	48.6	50.00	97.1	77-129	
Surr: Toluene-d8	2037-26-5	48.6	50.00	97.1	77-129	

Report Date: 2/10/2014 Page 35 of 49

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

Lab Sample ID:

Client Sample ID: TW4-01 02052014

1402140-005

Collection Date:

2/5/2014 923h

Received Date:

2/10/2014 1015h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/10/2014 2251h	E300.0	5.00	38.9	
Nitrate/Nitrite (as N)	mg/L		2/14/2014 1755h	E353.2	1.00	7.74	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

> Jose Rocha **QA** Officer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-005C

Client Sample ID: TW4-01 02052014

Collection Date:

2/5/2014 923h

Received Date:

2/10/2014 1015h

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 2/11/2014 308h

Units: µg/L

Dilution Factor: 50

Method:

Contact: Garrin Palmer

SW8260C

Test Code: 8260-W

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Compound			CAS umber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	50.0	1,090	×
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	2,610	2,500	104	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	2,630	2,500	105	80-128	
Surr: Dibromofluoromethane	1868-53-7	2,480	2,500	99.2	80-124	
Surr: Toluene-d8	2037-26-5	2,520	2,500	101	77-129	

^{~ -} The reporting limits were raised due to high analyte concentrations.

Analyzed: 2/10/2014 1545h

Units: µg/L Dilution Factor: 1 Method:

SW8260C

Qual

Compound	CAS Number	Reporting Limit	Analytical Result
Carbon tetrachloride	56-23-5	1.00	5.47
Chloromethane	74-87-3	1.00	< 1.00
Methylene chloride	75-09-2	1.00	< 1.00

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	51.6	50.00	103	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.7	50.00	103	80-128	
Surr: Dibromofluoromethane	1868-53-7	50.5	50.00	101	80-124	
Surr: Toluene-d8	2037-26-5	49.4	50.00	98.8	77-129	

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-007

Client Sample ID: TW4-02_02062014 **Collection Date:**

2/6/2014

Received Date:

2/10/2014 1015h

Analytical Results

463 West 3600 South 3alt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/10/2014 233	7h E300.0	10.0	45.9	
Nitrate/Nitrite (as N)	mg/L		2/14/2014 180	2h E353.2	1.00	7.87	

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-007C

Client Sample ID: TW4-02_02062014

Collection Date:

2/6/2014 818h

Received Date:

2/10/2014 1015h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 2/11/2014 924h

Units: µg/L

Dilution Factor: 100

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

Compound			CAS umber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	100	3,180	*
Surrogate	CAS	Result	Amount Splke	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	5,180	5,000	104	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	5,140	5,000	103	80-128	
Surr: Dibromofluoromethane	1868-53-7	4,940	5,000	98.8	80-124	
Surr: Toluene-d8	2037-26-5	4,960	5,000	99.2	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 2/10/2014 1623h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

CAS Number	Reporting Limit	Analytical Result	Qual
56-23-5	1.00	7.10	
74-87-3	1.00	< 1.00	
75-09-2	1.00	< 1.00	
	Number 56-23-5 74-87-3	Number Limit 56-23-5 1.00 74-87-3 1.00	Number Limit Result 56-23-5 1.00 7.10 74-87-3 1.00 < 1.00

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	52.5	50.00	105	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.7	50.00	103	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.9	50.00	104	80-124	
Surr: Toluene-d8	2037-26-5	50.0	50.00	99.9	77-129	

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-001

Collection Date:

Client Sample ID: TW4-03_01222014

Received Date:

1/22/2014 943h 1/24/2014 911h

Analytical Results

Compound	Units	Date Prepared	Date Analy		Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		1/30/2014	741h	E300.0	5.00	24.9	
Nitrate/Nitrite (as N)	mg/L		1/29/2014	1902h	E353.2	1.00	6.66	.3.

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

463 West 3600 South Salt Lake City, UT 84115

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/4/2014 Page 6 of 42

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-001C

Client Sample ID: TW4-03 01222014 **Collection Date:**

1/22/2014 943h

Received Date:

1/24/2014 911h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/24/2014 1208h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00
Chloroform	67-66-3	1.00	< 1.00
Chloromethane	74-87-3	1.00	< 1.00
Methylene chloride	75-09-2	1.00	< 1.00

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	52,4	50.00	105	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	52.3	50.00	105	80-128	
Surr: Dibromofluoromethane	1868-53-7	50.3	50.00	101	80-124	
Surr: Toluene-d8	2037-26-5	50.5	50.00	101	77-129	

Kyle F. Gross Laboratory Director

Jose Rocha

QA Officer

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-008 Client Sample ID: TW4-03R_01212014

Collection Date:

1/21/2014 928h

Received Date:

1/24/2014 911h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		1/30/2014 1722h	E300.0	1.00	< 1.00	
Nitrate/Nitrite (as N)	mg/L		1/29/2014 1911h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/4/2014 Page 13 of 42

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-008C

Client Sample ID: TW4-03R_01212014

Collection Date:

1/21/2014 928h

Received Date:

1/24/2014 911h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/24/2014 1518h

Units: $\mu g/L$

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South 3alt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

3-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	54.4	50.00	109	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.2	50.00	102	80-128	
Surr: Dibromofluoromethane	1868-53-7	50.9	50.00	102	80-124	
Surr: Toluene-d8	2037-26-5	49.4	50.00	98.9	77-129	

Kyle F. Gross **Laboratory Director**

Jose Rocha

QA Officer

Report Date: 2/4/2014 Page 27 of 42

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-012

Client Sample ID: TW4-04 01272014 **Collection Date:**

1/27/2014 1433h

Received Date:

1/31/2014 919h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Dat Analy	_	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/4/2014	522h	E300.0	10.0	37.4	
Nitrate/Nitrite (as N)	mg/L		1/31/2014	1534h	E353.2	1.00	7.28	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/10/2014 Page 17 of 49

CAS

Number

67-66-3

Amount Spiked

1,000

1,000

1,000

1,000

Result

1,200

1,010

1,120

969

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID: Client Sample ID: TW4-04 01272014

1401525-012C

Collection Date:

1/27/2014 1433h 1/31/2014 919h

Received Date: Analytical Results Test Code: 8260-W

Qual

Qual

Qual

VOAs by GC/MS Method 8260C/5030C

Analyzed: 2/1/2014 2258h

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Units: µg/L

Compound

Chloroform

Surrogate

Dilution Factor: 20

Method:

Reporting

Limit

20.0

% REC

120

101

112

96.9

Contact: Garrin Palmer

SW8260C

Analytical

Result

1,260

Limits

72-151

80-128

80-124

77-129

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

1/31/2014 1529h

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: Units: µg/L

Surr: Toluene-d8

Dilution Factor: 1

CAS

17060-07-0

460-00-4

1868-53-7

2037-26-5

Method:

SW8260C

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Compound	CAS Number	Reporting Limit	Analytical Result
Carbon tetrachloride	56-23-5	1.00	3.88
Chloromethane	74-87-3	1.00	< 1.00
Methylene chloride	75-09-2	1.00	< 1.00

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	59.1	50.00	118	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.5	50.00	101	80-128	
Surr: Dibromofluoromethane	1868-53-7	56.3	50.00	113	80-124	
Surr: Toluene-d8	2037-26-5	49.0	50.00	98.0	77-129	

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-007

Client Sample ID: TW4-05_01302014

Collection Date:

1/30/2014 718h

Received Date:

1/31/2014 919h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Dat Analy		Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/4/2014	211h	E300.0	5.00	40.5	
Nitrate/Nitrite (as N)	mg/L		1/31/2014	1527h	E353.2	1.00	9.16	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/10/2014 Page 12 of 49

Client:

Energy Fuels Resources, Inc.

mergy ruers Resources, me

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

Client Sample ID: TW4-05_01302014 **Collection Date:** 1/30/2014 718h

Collection Date: Received Date:

1/31/2014 919h

1401525-007C

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analytical Acsults

Analyzed: 1/31/2014 1353h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South 3alt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result Qual	
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	12.5	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	58.3	50.00	117	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.0	50.00	102	80-128	
Surr: Dibromofluoromethane	1868-53-7	54.0	50.00	108	80-124	
Surr: Toluene-d8	2037-26-5	49.2	50.00	98.4	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/10/2014 Page 29 of 49

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-005

Client Sample ID: TW4-06_01292014

Collection Date:

1/29/2014 758h

Received Date:

1/31/2014 919h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/4/2014 1	6h E300.0	10.0	40.6	
Nitrate/Nitrite (as N)	mg/L		1/31/2014 15	7h E353.2	0.100	0.184	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

≥-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

> Jose Rocha **QA** Officer

> > Report Date: 2/10/2014 Page 10 of 49

COMA and DCDA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the

Client:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

Project: Lab Sample ID:

Client Sample ID: TW4-06_01292014

1401525-005C

Collection Date:

1/29/2014 758h

Received Date:

1/31/2014 919h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/31/2014 1315h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	5.70	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual	
Surr: 1,2-Dichloroethane-d4	17060-07-0	57.8	50.00	116	72-151		
Surr: 4-Bromofluorobenzene	460-00-4	50.2	50.00	100	80-128		
Surr: Dibromofluoromethane	1868-53-7	53.7	50.00	107	80-124		
Surr: Toluene-d8	2037-26-5	49.1	50.00	98.3	77-129		

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/10/2014 Page 27 of 49

STANDA STANDA and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exchange

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-004

Client Sample ID: TW4-07_02052014 **Collection Date:**

2/5/2014 910h

Received Date:

2/10/2014 1015h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/10/2014 2227h	E300.0	5.00	38.2	
Nitrate/Nitrite (as N)	mg/L		2/14/2014 1754h	E353.2	1.00	4.24	

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

3-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/17/2014 Page 9 of 34

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-004C

Client Sample ID: TW4-07_02052014

Collection Date:

2/5/2014 910h

Received Date:

2/10/2014 1015h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 2/11/2014 249h

Units: µg/L

Dilution Factor: 50

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound				Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	50.0	946	×
Surrogate	CAS	Result	Amount Splke	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	2,600	2,500	104	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	2,640	2,500	106	80-128	
Surr: Dibromofluoromethane	1868-53-7	2,480	2,500	99.0	80-124	
Surr: Toluene-d8	2037-26-5	2,510	2,500	101	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 2/10/2014 1525h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	5.41	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	50.8	50.00	102	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.3	50.00	103	80-128	
Surr: Dibromofluoromethane	1868-53-7	49.8	50.00	99.7	80-124	
Surr: Toluene-d8	2037-26-5	49.0	50.00	97.9	77-129	

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-014 Client Sample ID: TW4-08 01232014

Collection Date:

1/23/2014 845h

Received Date:

1/24/2014 911h

Analytical Results

463 West 3600 South 3alt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyz		Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		1/31/2014	1945h	E300.0	10.0	48.5	
Nitrate/Nitrite (as N)	mg/L		1/29/2014	1925h	E353.2	0.100	0.166	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

> Jose Rocha **QA** Officer

> > Report Date: 2/4/2014 Page 19 of 42

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-014C

Collection Date:

Client Sample ID: TW4-08_01232014 1/23/2014 845h

Test Code: 8260-W

Received Date:

1/24/2014 911h

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/24/2014 1713h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	63.8	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	55.2	50.00	110	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	49.2	50.00	98.3	80-128	
Surr: Dibromofluoromethane	1868-53-7	52.6	50.00	105	80-124	
Surr: Toluene-d8	2037-26-5	48.8	50.00	97.6	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/4/2014 Page 33 of 42

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-009

Client Sample ID: TW4-08_02062014 Re Sample

Collection Date:

2/6/2014 825h

Received Date: 2/10/2014 1015h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Dat Analy		Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/11/2014	157h	E300.0	10.0	46.6	
Nitrate/Nitrite (as N)	mg/L		2/14/2014	1805h	E353.2	0.100	0.165	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

≥-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/17/2014 Page 14 of 34

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-009C

Client Sample ID: TW4-08_02062014 Re Sample

Collection Date: Received Date:

2/6/2014 825h

2/10/2014 1015h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Units: µg/L

Analyzed: 2/10/2014 1701h

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	100	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	53.0	50.00	106	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.5	50.00	103	80-128	
Surr: Dibromofluoromethane	1868-53-7	50.0	50.00	100	80-124	
Surr: Toluene-d8	2037-26-5	50.0	50.00	100	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/17/2014 Page 24 of 34

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-001

Collection Date:

Client Sample ID: TW4-09 01292014

1/29/2014 740h

Received Date:

1/31/2014 919h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyz		Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/3/2014	2233h	E300.0	5.00	22.0	
Nitrate/Nitrite (as N)	mg/L		1/31/2014	1512h	E353.2	1.00	4.36	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/10/2014 Page 6 of 49

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-001C

Client Sample ID: TW4-09_01292014 **Collection Date:**

1/29/2014 740h

Received Date:

1/31/2014 919h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/31/2014 1120h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	58.8	50.00	118	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.5	50.00	103	80-128	
Surr: Dibromofluoromethane	1868-53-7	55.0	50.00	110	80-124	
Surr: Toluene-d8	2037-26-5	50.5	50.00	101	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/10/2014 Page 23 of 49

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

1015h

Lab Sample ID:

1402140-006

Client Sample ID: TW4-10 02052014 **Collection Date:**

2/5/2014 934h

Received Date: 2/10/2014

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/10/2014 2314h	E300.0	10.0	73.0	
Nitrate/Nitrite (as N)	mg/L		2/14/2014 1820h	E353.2	1.00	16.8	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

> Jose Rocha **QA** Officer

> > Report Date: 2/17/2014 Page 11 of 34

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-006C

Client Sample ID: TW4-10 02052014

Collection Date:

2/5/2014 934h

Received Date:

2/10/2014 1015h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 2/11/2014 827h

Units: µg/L

Dilution Factor: 100

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687

3-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Compound		N	CAS I umber	Reporting Limit	Analytical Result	Qual	
Chloroform		6	7-66-3	100	1,260	160	
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual	
Surr: 1,2-Dichloroethane-d4	17060-07-0	5,230	5,000	105	72-151		
Surr: 4-Bromofluorobenzene	460-00-4	5,260	5,000	105	80-128		
Surr: Dibromofluoromethane	1868-53-7	4,930	5,000	98.7	80-124		
Surr: Toluene-d8	2037-26-5	4,980	5,000	99.5	77-129		

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 2/10/2014 1604h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

Compound		CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		56-23-5	1.00	5.16	
Chloromethane		74-87-3	1.00	< 1.00	
Methylene chloride		75-09-2	1.00	< 1.00	
2	616	B 11 1 10	41 . A/ DDG	T	0.1

CAS	Result	Amount Spiked	% REC	Limits	Qual
17060-07-0	51.8	50.00	104	72-151	
460-00-4	52.0	50.00	104	80-128	
1868-53-7	50.6	50.00	101	80-124	
2037-26-5	49.3	50.00	98.7	77-129	
	17060-07-0 460-00-4 1868-53-7	17060-07-0 51.8 460-00-4 52.0 1868-53-7 50.6	17060-07-0 51.8 50.00 460-00-4 52.0 50.00 1868-53-7 50.6 50.00	17060-07-0 51.8 50.00 104 460-00-4 52.0 50.00 104 1868-53-7 50.6 50.00 101	17060-07-0 51.8 50.00 104 72-151 460-00-4 52.0 50.00 104 80-128 1868-53-7 50.6 50.00 101 80-124

Report Date: 2/17/2014 Page 21 of 34

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-003

Client Sample ID: TW4-11_02052014 **Collection Date:**

2/5/2014

Received Date:

859h 2/10/2014 1015h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analy	-	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/10/2014	2204h	E300.0	10.0	48.5	
Nitrate/Nitrite (as N)	mg/L		2/14/2014	1752h	E353.2	1.00	8.47	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Report Date: 2/17/2014 Page 8 of 34 All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information. This report is provided for the exclusive use of the

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-003C

Client Sample ID: TW4-11_02052014 **Collection Date:**

2/5/2014 859h

Received Date:

2/10/2014 1015h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 2/11/2014 230h

Units: µg/L

Dilution Factor: 20

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

≥-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Compound			CAS umber	Reporting Limit	Analytical Result	Qual
Chloroform		67-66-3		20.0	785	
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	1,020	1,000	103	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	1,060	1,000	106	80-128	
Surr: Dibromofluoromethane	1868-53-7	980	1,000	98.0	80-124	
Surr: Toluene-d8	2037-26-5	1,000	1,000	101	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 2/10/2014 1506h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

Compound		CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		56-23-5	1,00	5.19	
Chloromethane		74-87-3	1.00	< 1.00	
Methylene chloride		75-09-2	1.00	< 1.00	
S	CAS	Decule Assessed C	-Ud 0/ DEC	T touth	Onal

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	51.1	50.00	102	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	52.3	50.00	105	80-128	
Surr: Dibromofluoromethane	1868-53-7	50.2	50.00	100	80-124	
Surr: Toluene-d8	2037-26-5	49.7	50.00	99.4	77-129	

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-002

Collection Date:

Client Sample ID: TW4-12_01222014

1/22/2014 1003h

Received Date:

1/24/2014 911h

Analytical Results

463 West 3600 South 3alt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analy	_	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		1/30/2014	857h	E300.0	5.00	41.6	
Nitrate/Nitrite (as N)	mg/L		1/29/2014	1927h	E353.2	1.00	18.4	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/4/2014 Page 7 of 42

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-002C

Client Sample ID: TW4-12 01222014 **Collection Date:**

1/22/2014 1003h

Received Date:

1/24/2014 911h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/24/2014 1227h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

Salt Lake City, UT 84115

463 West 3600 South

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result Qu	ıal
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	
				_

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	53.0	50.00	106	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.8	50.00	102	80-128	
Surr: Dibromofluoromethane	1868-53-7	50.8	50.00	102	80-124	
Surr: Toluene-d8	2037-26-5	49.9	50.00	99.9	77-129	

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-005

Client Sample ID: TW4-13_01222014 **Collection Date: Received Date:**

1/22/2014 1023h

1/24/2014 911h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		1/30/2014 1541h	E300.0	10.0	63.1	
Nitrate/Nitrite (as N)	mg/L		1/29/2014 1907h	E353.2	1.00	7.09	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-005C

Collection Date:

Client Sample ID: TW4-13_01222014 1/22/2014 1023h

Received Date:

1/24/2014 911h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/24/2014 1421h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

urrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	54.1	50.00	108	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.8	50.00	102	80-128	
Surr: Dibromofluoromethane	1868-53-7	50.9	50.00	102	80-124	
Surr: Toluene-d8	2037-26-5	50.1	50.00	100	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/4/2014 Page 24 of 42

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-006

Collection Date:

Client Sample ID: TW4-14_01222014 1/22/2014 1028h

Received Date:

1/24/2014 911h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		1/30/2014 1606	E300.0	5.00	35.5	
Nitrate/Nitrite (as N)	mg/L		1/29/2014 1909	E353.2	1.00	5.92	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/4/2014 Page 11 of 42

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-006C

Client Sample ID: TW4-14_01222014 **Collection Date:**

1/22/2014 1028h

Received Date:

1/24/2014 911h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/24/2014 1440h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual			
Carbon tetrachloride	56-23-5	1.00	< 1.00				
Chloroform	67-66-3	1.00	< 1.00				
Chloromethane	74-87-3	1.00	< 1.00				
Methylene chloride	75-09-2	1.00	< 1.00				

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	54.3	50.00	109	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.2	50.00	102	80-128	
Surr: Dibromofluoromethane	1868-53-7	50.7	50.00	101	80-124	
Surr: Toluene-d8	2037-26-5	49.9	50.00	99.7	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/4/2014 Page 25 of 4

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-014

Collection Date:

Client Sample ID: MW-26 01272014

1/27/2014 1420h

Received Date:

1/31/2014 919h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Dat Analy		Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/4/2014	616h	E300.0	10.0	59.4	
Nitrate/Nitrite (as N)	mg/L		1/31/2014	1551h	E353.2	0.100	0.549	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-014C

Client Sample ID: MW-26 01272014

1/27/2014 1420h

Collection Date: Received Date:

1/31/2014 919h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 2/1/2014 2336h

Units: µg/L

Dilution Factor: 50

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound			CAS umber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	50.0	1,400	~.
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	3,020	2,500	121	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	2,510	2,500	100	80-128	
Surr: Dibromofluoromethane	1868-53-7	2,780	2,500	111	80-124	
Surr: Toluene-d8	2037-26-5	2,460	2,500	98.5	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 1/31/2014 1607h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

Compound		CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		56-23-5	1.00	< 1.00	
Chloromethane		74-87-3	1.00	< 1.00	
Methylene chloride		75-09-2	1.00	13.8	
8	C1.0	T	A DEC	* * **	0.1

CAS	Result	Amount Spiked	% REC	Limits	Qual
17060-07-0	59.4	50.00	119	72-151	
460-00-4	50.0	50.00	99.9	80-128	
1868-53-7	56.5	50.00	113	80-124	
2037-26-5	48.9	50.00	97.9	77-129	
	17060-07-0 460-00-4 1868-53-7	17060-07-0 59.4 460-00-4 50.0 1868-53-7 56.5	17060-07-0 59.4 50.00 460-00-4 50.0 50.00 1868-53-7 56.5 50.00	17060-07-0 59.4 50.00 119 460-00-4 50.0 50.00 99.9 1868-53-7 56.5 50.00 113	17060-07-0 59.4 50.00 119 72-151 460-00-4 50.0 50.00 99.9 80-128 1868-53-7 56.5 50.00 113 80-124

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-006

Client Sample ID: TW4-16_01292014 **Collection Date:**

1/29/2014 805h

Received Date:

1/31/2014 919h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analy	-	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/4/2014	144h	E300.0	10.0	66.8	
Nitrate/Nitrite (as N)	mg/L		1/31/2014	1548h	E353.2	1.00	3.16	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-006C

Client Sample ID: TW4-16_01292014

Collection Date:

1/29/2014 805h

Received Date:

1/31/2014 919h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/31/2014 1334h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result Qu	ıal
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	6.93	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	58.9	50.00	118	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.8	50.00	102	80-128	
Surr: Dibromofluoromethane	1868-53-7	54.4	50.00	109	80-124	
Surr: Toluene-d8	2037-26-5	49.4	50.00	98.8	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/10/2014 Page 28 of 49

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-002

Collection Date:

Client Sample ID: MW-32 01292014 1/29/2014 1305h

Received Date:

1/31/2014 919h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analy		Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/3/2014	2355h	E300.0	5.00	34.0	
Nitrate/Nitrite (as N)	mg/L		1/31/2014	1547h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/10/2014 Page 7 of 49

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-002C

Client Sample ID: MW-32 01292014 **Collection Date:**

1/29/2014 1305h

1/31/2014 919h

Test Code: 8260-W

Received Date:

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/31/2014 1139h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	58.4	50.00	117	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.4	50.00	103	80-128	
Surr: Dibromofluoromethane	1868-53-7	54.0	50.00	108	80-124	
Surr: Toluene-d8	2037-26-5	50.0	50.00	100	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/10/2014 Page 24 of 49

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-009

Collection Date:

Client Sample ID: TW4-18_01302014 1/30/2014 733h

Received Date:

1/31/2014 919h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analy	-	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/4/2014	400h	E300.0	5.00	40.9	
Nitrate/Nitrite (as N)	mg/L		1/31/2014	1530h	E353.2	1.00	12.8	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-009C

Collection Date:

Client Sample ID: TW4-18_01302014 1/30/2014 733h

Received Date:

1/31/2014 919h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/31/2014 1431h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

CAS Number	Reporting Limit	Analytical Result	Qual
56-23-5	1.00	< 1.00	
67-66-3	1.00	38.9	
74-87-3	1.00	< 1.00	
75-09-2	1.00	< 1.00	
	56-23-5 67-66-3 74-87-3	Number Limit 56-23-5 1.00 67-66-3 1.00 74-87-3 1.00	Number Limit Result 56-23-5 1.00 < 1.00

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	58.4	50.00	117	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.2	50.00	102	80-128	
Surr: Dibromofluoromethane	1868-53-7	55.1	50.00	110	80-124	
Surr: Toluene-d8	2037-26-5	49.3	50.00	98.5	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/10/2014 Page 31 of 49

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-011

Client Sample ID: TW4-19_01272014 **Collection Date:**

1/27/2014 1510h

Received Date:

1/31/2014 919h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Dat Analy	_	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/4/2014	454h	E300.0	50.0	134	
Nitrate/Nitrite (as N)	mg/L		1/31/2014	1550h	E353.2	0.500	1.62	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/10/2014 Page 16 of 4

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-011C

Client Sample ID: TW4-19 01272014

Collection Date:

1/27/2014 1510h 1/31/2014 919h

Test Code: 8260-W

Received Date:

VOAs by GC/MS Method 8260C/5030C

Analytical Results

Analyzed: 2/1/2014 2239h

Units: µg/L

Dilution Factor: 10

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

> Jose Rocha **QA** Officer

Compound			CAS umber	Reporting Limit	Analytical Result	Qual
Chloroform		67-66-3		10.0	586	~
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	594	500.0	119	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	499	500.0	99.8	80-128	
Surr: Dibromofluoromethane	1868-53-7	555	500.0	111	80-124	
Surr: Toluene-d8	2037-26-5	487	500.0	97.3	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 1/31/2014 1510h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	4.05	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	58.6	50.00	117	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	49.8	50.00	99.6	80-128	
Surr: Dibromofluoromethane	1868-53-7	55.6	50.00	111	80-124	
Surr: Toluene-d8	2037-26-5	48.3	50.00	96.6	77-129	

Report Date: 2/10/2014 Page 33 of 49

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-016

Client Sample ID: TW4-20 01272014 **Collection Date:**

1/27/2014 1412h

Received Date:

1/31/2014 919h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analy	_	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/4/2014	710h	E300.0	50.0	254	
Nitrate/Nitrite (as N)	mg/L		1/31/2014	1540h	E353.2	1.00	7.56	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/10/2014 Page 21 of 49

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-016C

Client Sample ID: TW4-20 01272014

Collection Date:

1/27/2014 1412h

Received Date:

1/31/2014 919h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 2/2/2014 014h

Units: µg/L

Dilution Factor: 500

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound			CAS lumber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	500	17,800	~
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	30,000	25,000	120	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	25,100	25,000	101	80-128	
Surr: Dibromofluoromethane	1868-53-7	27,700	25,000	111	80-124	
Surr: Toluene-d8	2037-26-5	24,200	25,000	96.7	77-129	

- The reporting limits were raised due to high analyte concentrations.

Analyzed: 1/31/2014 1645h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	18.4	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	2.04	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	55.3	50.00	111	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	46.4	50.00	92.8	80-128	
Surr: Dibromofluoromethane	1868-53-7	53.3	50.00	107	80-124	
Surr: Toluene-d8	2037-26-5	46.0	50.00	92.1	77-129	

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-001

Client Sample ID: TW4-21_02052014 **Collection Date:**

2/5/2014

Received Date:

2/10/2014 1015h

Analytical Results

463 West 3600 South 3alt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/11/2014 1704h	E300.0	50.0	200	
Nitrate/Nitrite (as N)	mg/L		2/14/2014 1749h	E353.2	1.00	11.4	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

3-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-001C

Client Sample ID: TW4-21 02052014

Collection Date:

2/5/2014 825h

Received Date:

2/10/2014 1015h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 2/11/2014 152h

Units: µg/L

Dilution Factor: 10

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South 3alt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound			CAS I umber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	10.0	220	20)
Surrogate	CAS	Result	Amount Spike	d % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	501	500.0	100	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	520	500.0	104	80-128	
Surr: Dibromofluoromethane	1868-53-7	489	500.0	97.9	80-124	
Surr: Toluene-d8	2037-26-5	500	500.0	100	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 2/10/2014 1428h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

Compound		CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		56-23-5	1.00	6.23	
Chloromethane		74-87-3	1.00	< 1.00	
Methylene chloride		75-09-2	1.00	< 1.00	
C .	CAS	D	-UI O/ DEC	Thulte	Onel

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	49.9	50.00	99.8	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.7	50.00	103	80-128	
Surr: Dibromofluoromethane	1868-53-7	49.4	50.00	98.7	80-124	
Surr: Toluene-d8	2037-26-5	49.8	50.00	99.7	77-129	

Report Date: 2/17/2014 Page 16 of 34

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-015

Client Sample ID: TW4-22_01272014

Collection Date:

1/27/2014 1403h

Received Date:

1/31/2014 919h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analy		Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/4/2014	643h	E300.0	100	598	
Nitrate/Nitrite (as N)	mg/L		1/31/2014	1538h	E353.2	10.0	54.6	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/10/2014 Page 20 of 49

COULD SENIA and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information. This report is provided for the exclusive use of fi

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-015C

Collection Date:

Client Sample ID: TW4-22 01272014 1/27/2014 1403h

Received Date:

1/31/2014 919h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 2/1/2014 2355h

Units: µg/L

Dilution Factor: 100

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Compound			CAS I	Reporting Limit	Analytical Result	Qual
Chloroform		67-66-3		100	12,100	-
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	5,960	5,000	119	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	5,000	5,000	99.9	80-128	
Surr: Dibromofluoromethane	1868-53-7	5,570	5,000	111	80-124	
Surr: Toluene-d8	2037-26-5	4,890	5,000	97.8	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 1/31/2014 1626h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

Compound		CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		56-23-5	1.00	6.06	
Chloromethane		74-87-3	1.00	< 1.00	
Methylene chloride		75-09-2	1.00	2.83	
Curano a a ta	CAS	Dogult Amount Sail	lead 0/ DEC	Limite	Ougl

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	59.5	50.00	119	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	49.9	50.00	99.8	80-128	
Surr: Dibromofluoromethane	1868-53-7	56.6	50.00	113	80-124	
Surr: Toluene-d8	2037-26-5	48.5	50.00	97.0	77-129	

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-013

Client Sample ID: TW4-23_01232014

Collection Date:

1/23/2014 815h

Received Date:

1/24/2014 911h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		1/30/2014 2109h	E300.0	10.0	44.6	
Nitrate/Nitrite (as N)	mg/L		1/29/2014 1924h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha

QA Officer

Report Date: 2/4/2014 Page 18 of 42

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-013C

Client Sample ID: TW4-23 01232014

Collection Date:

1/23/2014 815h

Received Date:

1/24/2014 911h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/24/2014 1654h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	54.9	50.00	110	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.4	50.00	101	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.5	50.00	103	80-124	
Surr: Toluene-d8	2037-26-5	49.2	50.00	98.5	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/4/2014 Page 32 of 42

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-008

Collection Date:

Client Sample ID: TW4-24_01272014

Received Date:

1/27/2014 1355h 1/31/2014 919h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Dat Analy	-	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/4/2014	238h	E300.0	500	809	
Nitrate/Nitrite (as N)	mg/L		1/31/2014	1529h	E353.2	10.0	31.6	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

> Jose Rocha **QA** Officer

> > Report Date: 2/10/2014 Page 13 of 49

SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information. This report is provided for the exclusive use of the exclu

Client: **Project:** Energy Fuels Resources, Inc.

Lab Sample ID:

1st Quarter Chloroform 2014 1401525-008C

Client Sample ID: TW4-24_01272014

Collection Date:

1/27/2014 1355h

Received Date:

1/31/2014 919h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/31/2014 1412h

Units: $\mu g/L$

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South 3alt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

≥-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	78.5	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	1.18	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	58.9	50.00	118	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	47.9	50.00	95.8	80-128	
Surr: Dibromofluoromethane	1868-53-7	54.9	50.00	110	80-124	
Surr: Toluene-d8	2037-26-5	48.2	50.00	96.4	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/10/2014 Page 30 of 49

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-003

Collection Date:

Client Sample ID: TW4-25_01272014

1/27/2014 1338h

Received Date:

1/31/2014 919h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/6/2014 2018h	E300.0	10.0	85.7	
Nitrate/Nitrite (as N)	mg/L		1/31/2014 1515h	E353.2	1.00	2.16	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 ≥-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/10/2014 Page 8 of 49

ALL AL POSE STOWN and RCRA me performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

Client Sample ID: TW4-25_01272014

1401525-003C

Collection Date:

1/27/2014 1338h

Received Date:

1/31/2014 919h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/31/2014 1158h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	57.9	50.00	116	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.7	50.00	101	80-128	
Surr: Dibromofluoromethane	1868-53-7	54.0	50.00	108	80-124	
Surr: Toluene-d8	2037-26-5	49.4	50.00	98.8	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/10/2014 Page 25 of 49

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-004

Collection Date:

Client Sample ID: TW4-26_01292014 1/29/2014 750h

Received Date:

1/31/2014 919h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Dat Analy		Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/4/2014	049h	E300.0	5.00	16.9	
Nitrate/Nitrite (as N)	mg/L		1/31/2014	1516h	E353.2	1.00	14.2	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/10/2014 Page 9 of 49

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-004C

Client Sample ID: TW4-26_01292014

Collection Date:

1/29/2014 750h

Received Date:

1/31/2014 919h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/31/2014 1256h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	1.42	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual			
Surr: 1,2-Dichloroethane-d4	17060-07-0	57.9	50.00	116	72-151				
Surr: 4-Bromofluorobenzene	460-00-4	50.5	50.00	101	80-128				
Surr: Dibromofluoromethane	1868-53-7	53.6	50.00	107	80-124				
Surr: Toluene-d8	2037-26-5	49.1	50.00	98.2	77-129				

Kyle F. Gross **Laboratory Director**

> Jose Rocha QA Officer

> > Report Date: 2/10/2014 Page 26 of 49

COMA and PCPA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information. This report is provided for the exclusive use of the

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-009

Collection Date:

Client Sample ID: TW4-27_01232014

Received Date:

1/23/2014 742h 1/24/2014 911h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		1/30/2014 1838h	E300.0	5.00	21.8	
Nitrate/Nitrite (as N)	mg/L		1/29/2014 1931h	E353.2	5.00	31.3	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-009C

Client Sample ID: TW4-27_01232014

Collection Date:

1/23/2014 742h 1/24/2014 911h

Test Code: 8260-W

Contact: Garrin Palmer

Received Date:

Analytical Results

VOAs by GC/MS Method 8260C/5030C

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Analyzed: 1/24/2014 1537h

Units: µg/L **Dilution Factor:** 1 Method: SW8260C

Compound	CAS Number	Reporting Limit	Analytical Result Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00
Chloroform	67-66-3	1.00	< 1.00
Chloromethane	74-87-3	1.00	< 1.00
Methylene chloride	75-09-2	1.00	< 1.00

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	54.4	50.00	109	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.2	50.00	100	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.2	50.00	102	80-124	
Surr: Toluene-d8	2037-26-5	49.0	50.00	98.1	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/4/2014 Page 28 of 42

Contact: Garrin Palmer

Client: **Project:** Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-003

Client Sample ID: TW4-28_01222014 **Collection Date:**

1/22/2014 1008h

Received Date:

1/24/2014 911h

Analytical Results

463 West 3600 South	Compound	Units	Date Prepared	Date Analy		Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84115	Chloride	mg/L		1/30/2014	922h	E300.0	10.0	47.8	
	Nitrate/Nitrite (as N)	mg/L		1/29/2014	1928h	E353.2	1.00	16.9	

Phone: (801) 263-8686

Salt Lake

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-003C

Client Sample ID: TW4-28 01222014 **Collection Date:**

1/22/2014 1008h

Received Date:

1/24/2014 911h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/24/2014 1343h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result Qual	
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	53.4	50.00	107	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.0	50.00	99.9	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.0	50.00	102	80-124	
Surr: Toluene-d8	2037-26-5	49.6	50.00	99.2	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/4/2014 Page 22 of 42

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-002

Collection Date:

Client Sample ID: TW4-29_02052014

2/5/2014

Received Date:

2/10/2014 1015h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyz		Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/10/2014	2141h	E300.0	5.00	41.9	
Nitrate/Nitrite (as N)	mg/L		2/14/2014	1751h	E353.2	1.00	4.63	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-002C

Client Sample ID: TW4-29 02052014 **Collection Date:**

2/5/2014 842h

Received Date:

2/10/2014 1015h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 2/11/2014 211h

Units: µg/L

Dilution Factor: 10

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Compound			CAS I	Reporting Limit	Analytical Result	Qual
Chloroform		67-66-3		10.0		~
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	506	500.0	101	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	527	500.0	105	80-128	
Surr: Dibromofluoromethane	1868-53-7	488	500.0	97.6	80-124	
Surr: Toluene-d8	2037-26-5	500	500.0	99.9	77-129	

~ - The reporting limits were raised due to high analyte concentrations.

Analyzed: 2/10/2014 1447h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

Compound			CAS F umber	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		5	6-23-5	1.00	< 1.00	
Chloromethane		7	4-87-3	1.00	< 1.00	
Methylene chloride		7	5-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spike	d % REC	Limits	Qual

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	51.0	50.00	102	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	52.9	50.00	106	80-128	
Surr: Dibromofluoromethane	1868-53-7	49.8	50.00	99.5	80-124	
Surr: Toluene-d8	2037-26-5	50.4	50.00	101	77-129	

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-008

Client Sample II

Client Sample ID: TW4-29R_02042014

Collection Date:

2/4/2014 1111h

Received Date:

2/10/2014 1015h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analy	T.	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/11/2014	001h	E300.0	1.00	< 1.00	
Nitrate/Nitrite (as N)	mg/L		2/14/2014	1804h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/17/2014 Page 13 of 34

Client:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

1111h

Project: Lab Sample ID:

1402140-008C

Client Sample ID: TW4-29R_02042014

Collection Date:

2/4/2014

Received Date:

2/10/2014 1015h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 2/11/2014 808h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

3-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	51.1	50.00	102	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.7	50.00	103	80-128	
Surr: Dibromofluoromethane	1868-53-7	48.6	50.00	97.2	80-124	
Surr: Toluene-d8	2037-26-5	49.4	50.00	98.7	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/17/2014 Page 23 of 34

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-010

Client Sample ID: TW4-30_01232014 **Collection Date:**

1/23/2014 750h

Received Date:

1/24/2014 911h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		1/30/2014 1903h	E300.0	5.00	36.0	
Nitrate/Nitrite (as N)	mg/L		1/29/2014 1920h	E353.2	0.100	1.36	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-010C

Collection Date:

Client Sample ID: TW4-30_01232014 1/23/2014 750h

Received Date:

1/24/2014 911h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/24/2014 1557h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result Q	ual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	54.3	50.00	109	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.2	50.00	100	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.4	50.00	103	80-124	
Surr: Toluene-d8	2037-26-5	49.2	50.00	98.4	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/4/2014 Page 29 of 42

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-011

Client Sample ID: TW4-31_01232014

Collection Date: Received Date:

1/23/2014 756h 1/24/2014 911h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		1/30/2014 2018h	E300.0	5.00	28.5	
Nitrate/Nitrite (as N)	mg/L		1/29/2014 1921h	E353.2	0.100	1.32	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/4/2014 Page 16 of 42

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-011C

Client Sample ID: TW4-31_01232014 **Collection Date:**

1/23/2014 756h

Received Date:

1/24/2014 911h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/24/2014 1616h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	54.8	50.00	110	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.3	50.00	101	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.3	50.00	103	80-124	
Surr: Toluene-d8	2037-26-5	49.2	50.00	98.5	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/4/2014 Page 30 of 42

Contact: Garrin Palmer

Client: Energy Fuels Resources, Inc.

Project: 1st Quarter Chloroform 2014

Lab Sample ID: 1401421-004

Collection Date: 1/22/2014 1015h **Received Date:** 1/24/2014 911h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		1/30/2014 94	7h E300.0	10.0	54.5	
Nitrate/Nitrite (as N)	mg/L		1/29/2014 190	6h E353.2	1.00	5.11	Ĭ

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/4/2014 Page 9 of 42

Client:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

Project: Lab Sample ID:

1401421-004C

Client Sample ID: TW4-32 01222014 **Collection Date:**

1/22/2014 1015h

Received Date:

1/24/2014 911h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/24/2014 1402h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 ≥-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	53.9	50.00	108	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.7	50.00	101	80-128	
Surr: Dibromofluoromethane	1868-53-7	50.6	50.00	101	80-124	
Surr: Toluene-d8	2037-26-5	49.6	50.00	99.2	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-010

Client Sample ID: TW4-33_01302014

Collection Date:

1/30/2014 750h

Received Date:

1/31/2014 919h

Analytical Results

463 West 3600 South 3alt Lake City, UT 84115

Compound	Units	Date Prepared	Dat Analy		Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/4/2014	427b	E300.0	10.0	43.5	
Nitrate/Nitrite (as N)	mg/L		2/7/2014	1615h	E353.2	1.00	2.56	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

Client Sample ID: TW4-33_01302014

Collection Date:

1/30/2014 750h

1401525-010C

Received Date: 1/31/2014 919h Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/31/2014 1450h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	124	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	59.5	50.00	119	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.3	50.00	101	80-128	
Surr: Dibromofluoromethane	1868-53-7	55.5	50.00	111	80-124	
Surr: Toluene-d8	2037-26-5	48.8	50.00	97.7	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/10/2014 Page 32 of 49

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-012

Client Sample ID: TW4-34 01232014

Collection Date:

1/23/2014 805h

Received Date:

1/24/2014 911h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Dat Analy	-	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		1/30/2014	2044h	E300.0	5.00	20.4	
Nitrate/Nitrite (as N)	mg/L		1/29/2014	1922h	E353.2	0.100	1.94	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha

QA Officer

Report Date: 2/4/2014 Page 17 of 42

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-012C

Client Sample ID: TW4-34_01232014

Collection Date: Received Date:

1/23/2014 805h 1/24/2014 911h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/24/2014 1635h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	52.0	50.00	104	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	46.2	50.00	92.4	80-128	
Surr: Dibromofluoromethane	1868-53-7	47.8	50.00	95.7	80-124	
Surr: Toluene-d8	2037-26-5	46.3	50.00	92.6	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/4/2014 Page 31 of 42

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-010

Client Sample ID: TW4-60_02062014 **Collection Date:**

2/6/2014 845h

Received Date:

2/10/2014 1015h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analy:		Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/11/2014	220h	E300.0	1.00	< 1.00	
Nitrate/Nitrite (as N)	mg/L		2/14/2014	1806h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-010C

Client Sample ID: TW4-60_02062014 **Collection Date:**

2/6/2014 845h

Test Code: 8260-W

Received Date:

2/10/2014 1015h

VOAs by GC/MS Method 8260C/5030C

Analytical Results

Analyzed: 2/10/2014 1720h

Units: µg/L

Dilution Factor: 1

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

CAS	Result	Amount Spiked	% REC	Limits	Qual			
17060-07-0	52.2	50.00	104	72-151				
460-00-4	51.5	50.00	103	80-128				
1868-53-7	48.8	50.00	97.7	80-124				
2037-26-5	49.4	50.00	98.7	77-129				
	17060-07-0 460-00-4 1868-53-7	17060-07-0 52.2 460-00-4 51.5 1868-53-7 48.8	17060-07-0 52.2 50.00 460-00-4 51.5 50.00 1868-53-7 48.8 50.00	17060-07-0 52.2 50.00 104 460-00-4 51.5 50.00 103 1868-53-7 48.8 50.00 97.7	17060-07-0 52.2 50.00 104 72-151 460-00-4 51.5 50.00 103 80-128 1868-53-7 48.8 50.00 97.7 80-124			

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/17/2014 Page 25 of 34

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-007

Client Sample ID: TW4-65_01222014 **Collection Date:**

1/22/2014 1008h

Received Date:

1/24/2014 911h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		1/30/2014 16311	E300.0	10.0	47.5	
Nitrate/Nitrite (as N)	mg/L		1/29/2014 19291	E353.2	1.00	18.1	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-007C

Collection Date:

Client Sample ID: TW4-65_01222014 1/22/2014 1008h

Received Date:

1/24/2014 911h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/24/2014 1459h

Units: µg/L

Dilution Factor: 1

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

∍-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result Qual	
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	55.4	50.00	111	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.2	50.00	102	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.4	50.00	103	80-124	
Surr: Toluene-d8	2037-26-5	50.4	50.00	101	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

any product or process, or in connection with the re-publication of

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-017

Client Sample ID: TW4-70_01292014 **Collection Date:**

1/29/2014 1305h

Received Date:

1/31/2014 919h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Dat Analy	-	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		2/4/2014	954h	E300.0	5.00	34.2	
Nitrate/Nitrite (as N)	mg/L		1/31/2014	1555h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-017C

Client Sample ID: TW4-70 01292014

Collection Date: Received Date:

1/29/2014 1305h 1/31/2014 919h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 2/1/2014 2220h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00
Chloroform	67-66-3	1.00	< 1.00
Chloromethane	74-87-3	1.00	< 1.00
Methylene chloride	75-09-2	1.00	< 1.00

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	58.9	50.00	118	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	49.0	50.00	98.1	80-128	
Surr: Dibromofluoromethane	1868-53-7	54.0	50.00	108	80-124	
Surr: Toluene-d8	2037-26-5	48.5	50.00	96.9	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/10/2014 Page 39 of 49

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401421-015A

Client Sample ID: Trip Blank

Collection Date: Received Date:

1/21/2014

1/24/2014 911h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/24/2014 1732h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	55.4	50.00	111	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.1	50.00	100	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.7	50.00	103	80-124	
Surr: Toluene-d8	2037-26-5	49.1	50.00	98.2	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/4/2014 Page 34 of 42

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1401525-018A

Client Sample ID: Trip Blank **Collection Date:**

1/27/2014

Received Date:

1/31/2014 919h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 1/31/2014 1101h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Garrin Palmer

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result Qual	
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	56.9	50.00	114	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	52.2	50.00	104	80-128	
Surr: Dibromofluoromethane	1868-53-7	54.3	50.00	109	80-124	
Surr: Toluene-d8	2037-26-5	50.3	50.00	101	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 2/10/2014 Page 40 of 49

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

1st Quarter Chloroform 2014

Lab Sample ID:

1402140-011A

Client Sample ID: Trip Blank **Collection Date:**

2/4/2014

Received Date:

2/10/2014 1015h

Test Code: 8260-W

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 2/10/2014 1409h Units: µg/L

Dilution Factor: 1

Method:

SW8260C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	

Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	49.4	50.00	98.8	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	53.6	50.00	107	80-128	
Surr: Dibromofluoromethane	1868-53-7	48.8	50.00	97.7	80-124	
Surr: Toluene-d8	2037-26-5	50.8	50.00	102	77-129	

Kyle F. Gross **Laboratory Director**

> Jose Rocha **QA** Officer

Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191 Blanding, UT 84511

TEL: (435) 678-2221

RE: 1st Quarter Chloroform 2014

Dear Garrin Palmer:

Lab Set ID: 1401421

463 West 3600 South Salt Lake City, UT 84115

American West Analytical Laboratories received 15 sample(s) on 1/24/2014 for the analyses presented in the following report.

American West Analytical Laboratories (AWAL) is accredited by The National

state accredited in Colorado, Idaho, New Mexico, and Missouri.

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

≥-mail: awal@awal-labs.com

web: www.awal-labs.com

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Thank You,

Kyle F. Digitally signed by Kyle F. Gross DN: cn=Kyle F. Gross, 0=AWAL, ou=AWAL-Laboratory Director, email=kyle@awal-labs.com, c=US Date: 2014,02,04 12:55:42 -07'00'

Approved by: Laboratory Director or designee

SAMPLE SUMMARY

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Set ID:

1401421

Date Received:

1/24/2014 911h

	Lab Sample ID	Client Sample ID	Date Collected	Matrix	Analysis
463 West 3600 South	1401421-001A	TW4-03_01222014	1/22/2014 943h	Aqueous	Anions, E300.0
Salt Lake City, UT 84115	1401421-001B	TW4-03_01222014	1/22/2014 943h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1401421-001C	TW4-03_01222014	1/22/2014 943h	Aqueous	VOA by GC/MS Method 8260C/5030C
Phone: (801) 263-8686	1401421-002A	TW4-12_01222014	1/22/2014 1003h	Aqueous	Anions, E300.0
• •	1401421-002B	TW4-12_01222014	1/22/2014 1003h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1401421-002C	TW4-12_01222014	1/22/2014 1003h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1401421-003A	TW4-28_01222014	1/22/2014 1008h	Aqueous	Anions, E300.0
	1401421-003B	TW4-28_01222014	1/22/2014 1008h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1401421-003C	TW4-28_01222014	1/22/2014 1008h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1401421-004A	TW4-32_01222014	1/22/2014 1015h	Aqueous	Anions, E300.0
Kyle F. Gross	1401421-004B	TW4-32 01222014	1/22/2014 1015h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	1401421-004C	TW4-32_01222014	1/22/2014 1015h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1401421-005A	TW4-13_01222014	1/22/2014 1023h	Aqueous	Anions, E300.0
Jose Rocha	1401421-005B	TW4-13_01222014	1/22/2014 1023h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	1401421-005C	TW4-13_01222014	1/22/2014 1023h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1401421-006A	TW4-14_01222014	1/22/2014 1028h	Aqueous	Anions, E300.0
	1401421-006B	TW4-14_01222014	1/22/2014 1028h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1401421-006C	TW4-14_01222014	1/22/2014 1028h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1401421-007A	TW4-65_01222014	1/22/2014 1008h	Aqueous	Anions, E300.0
	1401421-007B	TW4-65_01222014	1/22/2014 1008h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1401421-007C	TW4-65_01222014	1/2 <mark>2</mark> /2014 1008h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1401421-008A	TW4-03R_01212014	1/21/2014 928h	Aqueous	Anions, E300.0
	1401421-008B	TW4-03R_01212014	1/21/2014 928h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1401421-008C	TW4-03R_01212014	1/21/2014 928h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1401421-009A	TW4-27_01232014	1/23/2014 742h	Aqueous	Anions, E300.0
	1401421-009B	TW4-27_01232014	1/23/2014 742h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1401421-009C	TW4-27_01232014	1/23/2014 742h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1401421-010A	TW4-30_01232014	1/23/2014 750h	Aqueous	Anions, E300.0
	1401421-010B	TW4-30_01232014	1/23/2014 750h	Aqueous	Nitrite/Nitrate (as N), E353.2

Report Date: 2/4/2014 Page 2 of 42

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

1st Quarter Chloroform 2014

Lab Set ID:

1401421

Date Received: 1/24/2014 911h

	Lab Sample ID	Client Sample ID	Date Collected	Matrix	Analysis
462 West 2600 Court	1401421-010C	TW4-30_01232014	1/23/2014 750h	Aqueous	VOA by GC/MS Method 8260C/5030C
463 West 3600 South	1401421-011A	TW4-31_01232014	1/23/2014 756h	Aqueous	Anions, E300.0
Salt Lake City, UT 84115	1401421-011B	TW4-31_01232014	1/23/2014 756h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1401421-011C	TW4-31_01232014	1/23/2014 756h	Aqueous	VOA by GC/MS Method 8260C/5030C
Dhamar (901) 262 9696	1401421-012A	TW4-34_01232014	1/23/2014 805h	Aqueous	Anions, E300.0
Phone: (801) 263-8686	1401421-012B	TW4-34_01232014	1/23/2014 805h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1401421-012C	TW4-34_01232014	1/23/2014 805h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1401421-013A	TW4-23_01232014	1/23/2014 815h	Aqueous	Anions, E300.0
	1401421-013B	TW4-23_01232014	1/23/2014 815h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1401421-013C	TW4-23_01232014	1/23/2014 815h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1401421-014A	TW4-08_01232014	1/23/2014 845h	Aqueous	Anions, E300.0
Vyla E Crass	1401421-014B	TW4-08_01232014	1/23/2014 845h	Aqueous	Nitrite/Nitrate (as N), E353.2
Kyle F. Gross Laboratory Director	1401421-014C	TW4-08_01232014	1/23/2014 845h	Aqueous	VOA by GC/MS Method 8260C/5030C
Jose Rocha	1401421-015A	Trip Blank	1/21/2014	Aqueous	VOA by GC/MS Method 8260C/5030C
QA Officer					

Inorganic Case Narrative

Client: Contact:

Energy Fuels Resources, Inc. Garrin Palmer

Project: Lab Set ID:

1st Quarter Chloroform 2014

1401421

463 West 3600 South Salt Lake City, UT 84115

Sample Receipt Information:

Date of Receipt:

1/24/2014

Date(s) of Collection:

1/21, 1/22 & 1/23/2014

Sample Condition: C-O-C Discrepancies: Intact None

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Holding Time and Preservation Requirements: The analysis and preparation of all samples were performed within the method holding times. All samples were properly

preserved.

Fax: (801) 263-8687 ⇒-mail: awal@awal-labs.com

Preparation and Analysis Requirements: The samples were analyzed following the methods stated on the analytical reports.

web: www.awal-labs.com

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Kyle F. Gross Laboratory Director

Batch QC Requirements: MB, LCS, MS, MSD, RPD:

Jose Rocha QA Officer **Method Blanks (MB):** No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Samples (LCS): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicates (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, with the following exceptions:

Sample ID	Analyte	QC	Explanation
1401421-001B	Nitrate-Nitrite (as N)	MS	Sample matrix interference
1401421-004B	Nitrate-Nitrite (as N)	MS/MSD	Sample matrix interference

Corrective Action: None required.

Volatile Case Narrative

Client: Contact:

Project: Lab Set ID: Energy Fuels Resources, Inc.

Garrin Palmer

1st Quarter Chloroform 2014

1401421

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Sample Receipt Information:

Date of Receipt:

Date of Collection:

Sample Condition: C-O-C Discrepancies:

Method: Analysis: 1/24/2014

1/21, 1/22 & 1/23/2014

Intact None

None

SW-846 8260C/5030C

Volatile Organic Compounds

General Set Comments: Chloroform was observed above its reporting limit on 1401421-014C.

Holding Time and Preservation Requirements: All samples were received in appropriate containers and properly preserved. The analysis and preparation of all samples were performed within the method holding times following the methods stated on the analytical reports.

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Batch QC Requirements: MB, LCS, MS, MSD, RPD, and Surrogates:

Method Blanks (MBs): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Sample (LCSs): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicate (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Surrogates: All surrogate recoveries were within established limits.

Corrective Action: None required.

American West

Lab Set ID: 1401421

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

Client:

Project:

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact:

Garrin Palmer

Dept:

WC

QC Type: LCS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	LCS-R64442 300.0-W	Date Analyzed:	01/30/201	4 716h										
Chloride		4.96	mg/L	E300.0	0.0114	0.100	5.000	0	99.3	90 - 110				
Lab Sample ID: Test Code:	LCS-R64483 300.0-W	Date Analyzed:	01/31/201	4 1920h										
Chloride		5.03	mg/L	E300.0	0.0114	0.100	5.000	0	101	90 - 110				
Lab Sample ID: Test Code:	LCS-R64367 NO2/NO3-W-353.2	Date Analyzed:	01/29/201	4 1901h										
Nitrate/Nitrite (a	s N)	1.04	mg/L	E353.2	0.00252	0.100	1.000	0	104	90 - 110				

American West

Lab Set ID: 1401421

Client:

Project:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact:

Garrin Palmer

Dept: WC

QC Type: MBLK

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	MB-R64442 300.0-W	Date Analyzed:	01/30/20	14 651h										
Chloride		< 0.100	mg/L	E300.0	0.0114	0.100								
Lab Sample ID: Test Code:	MB-R64483 300.0-W	Date Analyzed:	01/31/20	14 1855h										
Chloride		< 0.100	mg/L	E300.0	0.0114	0.100								
Lab Sample ID: Test Code:	MB-R64367 NO2/NO3-W-353.2	Date Analyzed:	01/29/20	14 1859h										
Nitrate/Nitrite (a	s N)	< 0.100	mg/L	E353.2	0.00252	0.100								

Client:

Project:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact:

Contact: Garrin Palmer

Dept: WC

oction MC

QC Type: MS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1401421-001AMS 300.0-W	Date Analyzed:	01/30/201	4 806h										
Chloride		275	mg/L	E300.0	0.570	5.00	250.0	24.9	99.9	90 - 110				
Lab Sample ID: Test Code:	1401421-008AMS 300.0-W	Date Analyzed:	01/30/201	4 1747h										
Chloride		5.19	mg/L	E300.0	0.0114	0.100	5.000	0	104	90 - 110				
Lab Sample ID: Test Code:	1401421-014AMS 300.0-W	Date Analyzed:	01/31/201	4 2011h										
Chloride		523	mg/L	E300.0	1.14	10.0	500.0	48.5	95.0	90 - 110				
Lab Sample ID: Test Code:	1401421-001BMS NO2/NO3-W-353.2	Date Analyzed:	01/29/201	4 1937h										
Nitrate/Nitrite (as	s N)	18.9	mg/L	E353.2	0.0252	1.00	10.00	6.66	123	90 - 110				Ę
Lab Sample ID: Test Code:	1401421-004BMS NO2/NO3-W-353.2	Date Analyzed:	01/29/201	4 1939h										
Nitrate/Nitrite (as	s N)	16.1	mg/L	E353.2	0.0252	1.00	10.00	5.11	110	90 - 110				10

^{&#}x27; - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Client:

Project:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Garrin Palmer

Dept: WC

QC Type: MSD

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1401421-001AMSD 300.0-W	Date Analyzed:	01/30/201	4 832h										
Chloride		267	mg/L	E300.0	0.570	5.00	250.0	24.9	96.8	90 - 110	275	2.88	20	
Lab Sample ID: Test Code:	1401421-008AMSD 300.0-W	Date Analyzed:	01/30/201	4 1812h										
Chloride		5.22	mg/L	E300.0	0.0114	0.100	5.000	0	104	90 - 110	5.19	0.672	20	
Lab Sample ID: Test Code:	1401421-014AMSD 300.0-W	Date Analyzed:	01/31/201	4 2036h										
Chloride		522	mg/L	E300.0	1.14	10.0	500.0	48.5	94.7	90 - 110	523	0.262	20	
Lab Sample ID: Test Code:	1401421-001BMSD NO2/NO3-W-353.2	Date Analyzed:	01/29/201	4 1938h										
Nitrate/Nitrite (as	; N)	17.6	mg/L	E353.2	0.0252	1.00	10.00	6.66	109	90 - 110	18.9	7.46	10	
Lab Sample ID: Test Code:	1401421-004BMSD NO2/NO3-W-353.2	Date Analyzed:	01/29/201	4 1941h										
Nitrate/Nitrite (as	s N)	16.5	mg/L	E353.2	0.0252	1.00	10.00	5.11	114	90 - 110	16.1	2.21	10	.1

^{&#}x27;- Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

Client:

Project:

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Garrin Palmer

Dept: MSVOA

QC Type: LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: LCS VOC 012414A Test Code: 8260-W	Date Analyzed:	01/24/2014	4 754h										
Chloroform	21.1	μg/L	SW8260C	0.277	2.00	20.00	0	105	67 - 132				
Methylene chloride	20.6	μg/L	SW8260C	0.155	2.00	20.00	0	103	32 - 185				
Surr: 1,2-Dichloroethane-d4	53.1	μg/L	SW8260C			50.00		106	76 - 138				
Surr: 4-Bromofluorobenzene	51.6	μg/L	SW8260C			50.00		103	77 - 121				
Surr: Dibromofluoromethane	52.3	μg/L	SW8260C			50.00		105	67 - 128				
Surr: Toluene-d8	50.9	μg/L	SW8260C			50.00		102	81 - 135				

Client:

Project:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Garrin Palmer

Dept: MSVOA

QC Type: MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC 012414A Test Code: 8260-W	Date Analyzed:	01/24/20	14 832h										
Carbon tetrachloride	< 1.00	μg/L	SW8260C	0.137	1.00								
Chloroform	< 1.00	μg/L	SW8260C	0.277	1.00								
Chloromethane	< 1.00	μ g/L	SW8260C	0.127	1.00								
Methylene chloride	< 1.00	μg/L	SW8260C	0.155	1.00								
Surr: 1,2-Dichloroethane-d4	52.7	μg/L	SW8260C			50.00		105	76 - 138				
Surr: 4-Bromofluorobenzene	51.1	μg/L	SW8260C			50.00		102	77 - 121				
Surr: Dibromofluoromethane	50.3	$\mu g/L$	SW8260C			50.00		101	67 - 128				
Surr: Toluene-d8	50.5	μg/L	SW8260C			50.00		101	81 - 135				

American West

Lab Set ID: 1401421

Client:

Project:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Garrin Palmer

Dept: MSVOA

QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1401421-001CMS Test Code: 8260-W	Date Analyzed:	01/24/2014	1 1246h										
Chloroform	19.1	μg/L	SW8260C	0.277	2.00	20.00	0	95.6	50 - 146				
Methylene chloride	18.7	μg/L	SW8260C	0.155	2.00	20.00	0	93.6	30 - 192				
Surr: 1,2-Dichloroethane-d4	54.8	μg/L	SW8260C			50.00		110	72 - 151				
Surr: 4-Bromofluorobenzene	49.8	μg/L	SW8260C			50.00		99.6	80 - 128				
Surr: Dibromofluoromethane	53.3	μg/L	SW8260C			50.00		107	80 - 124				
Surr: Toluene-d8	50.4	μg/L	SW8260C			50.00		101	77 - 129				

Client:

Project:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Garrin Palmer

Dept: MSVOA

QC Type: MSD

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1401 Test Code: 8260	1421-001CMSD 0-W	Date Analyzed:	01/24/20	14 1305h										
Chloroform		20.2	μg/L	SW8260C	0.277	2.00	20.00	0	101	50 - 146	19.1	5.69	25	
Methylene chloride		19.7	μg/L	SW8260C	0.155	2.00	20.00	0	98.6	30 - 192	18.7	5.20	25	
Surr: 1,2-Dichloroeth	hane-d4	53.6	μg/L	SW8260C			50.00		107	72 - 151				
Surr: 4-Bromofluoro	obenzene	49.1	μg/L	SW8260C			50.00		98.3	80 - 128				
Surr: Dibromofluoro	omethane	51.4	μg/L	SW8260C			50.00		103	80 - 124				
Surr: Toluene-d8		48.5	μg/L	SW8260C			50.00		97.0	77 - 129				

WORK ORDER Summary

Work Order: 1401421 Due Date: 2/4/2014

Page 1 of 3

Client:

Energy Fuels Resources, Inc.

Garrin Palmer Contact:

Client ID: Project:

DEN100

1st Quarter Chloroform 2014

QC Level: \mathbf{III}

WO Type: Project

Comments:

PA Rush. QC 3 (Summary/No chromatograms). RL of 1 ppm for Chloride and VOC and 0.1 ppm for NO2/NO3. Expected levels provided by client - see

Jenn. J-flag what we can't meet. EIM Locus and EDD-Denison. Email Group.;

Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	ì
1401421-001A	TW4-03_01222014	1/22/2014 0943h	1/24/2014 0911h	300.0-W	Aqueous	V	df - wc	1
1401421-001B				1 SEL Analytes: CL NO2/NO3-W-353.2		V	df - no2/no3	_
1401421-001B				1 SEL Analytes: NO3NO2N			GI - 1102/1103	
1401421-001C				8260-W		V	VOCFridge	3
				Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4			
1401421-002A	TW4-12_01222014	1/22/2014 1003h	1/24/2014 0911h	300.0-W	Aqueous	V	df - wc	1
				1 SEL Analytes: CL				
1401421-002B				NO2/NO3-W-353.2		1	df - no2/no3	
				1 SEL Analytes: NO3NO2N				
1401421-002C				8260-W		~	VOCFridge	3
				Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4			
1401421-003A	TW4-28_01222014	1/22/2014 1008h	1/24/2014 0911h	300.0-W	Aqueous	V	df - wc	1
				1 SEL Analytes: CL				
1401421-003B	_			NO2/NO3-W-353.2		V	df - no2/no3	
				1 SEL Analytes: NO3NO2N				
1401421-003C				8260-W		V	VOCFridge	3
				Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4			
1401421-004A	TW4-32_01222014	1/22/2014 1015h	1/24/2014 0911h	300.0-W	Aqueous	~	df - wc	1
				1 SEL Analytes: CL				
1401421-004B				NO2/NO3-W-353.2		~	df - no2/no3	
				1 SEL Analytes: NO3NO2N				
1401421-004C				8260-W		~	VOCFridge	3
				Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4			
1401421-005A	TW4-13_01222014	1/22/2014 1023h	1/24/2014 0911h	300.0-W	Aqueous	~	df-wc	1
				1 SEL Analytes: CL				
1401421-005B				NO2/NO3-W-353.2		V	df - no2/no3	
				1 SEL Analytes: NO3NO2N				
1401421-005C				8260-W		~	VOCFridge	3
				Test Group: 8260-W-Custom	ı; # of Analytes: 4 / # of Surr: 4			
1401421-006A	TW4-14_01222014	1/22/2014 1028h	1/24/2014 0911h	300.0-W	Aqueous	V	df - wc	1
				1 SEL Analytes: CL		A		
					Aqueous Aqueous off- no2/no3 NO2N Custom; # of Analytes: 4 / # of Surr: 4 Aqueous off- no2/no3 NO2N Custom; # of Analytes: 4 / # of Surr: 4 Aqueous off- wc off- no2/no3 NO2N VOCFridge off- wc			

WORK ORDER Summary Work Order: 1401421 Page 2 of 3 Due Date: 2/4/2014 Client: Energy Fuels Resources, Inc. Received Date **Test Code** Client Sample ID Collected Date Matrix Sel Storage Sample ID 1/24/2014 0911h NO2/NO3-W-353.2 df - no2/no3 1401421-006B TW4-14 01222014 1/22/2014 1028h Aqueous 1 SEL Analytes: NO3NO2N 8260-W **VOCFridge** 1401421-006C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 1/22/2014 1008h 1/24/2014 0911h 300.0-W df - wc 1401421-007A TW4-65_01222014 Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1401421-007B 1 SEL Analytes: NO3NO2N 8260-W ~ VOCFridge 1401421-007C 3 Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 V 1401421-008A TW4-03R 01212014 1/21/2014 0928h 1/24/2014 0911h 300.0-W Aqueous df-wc 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1401421-008B 1 SEL Analytes: NO3NO2N **VOCFridge** 8260-W 1401421-008C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 ~ 1/23/2014 0742h 1/24/2014 0911h 300.0-W df - wc 1401421-009A TW4-27_01232014 Aqueous 1 SEL Analytes: CL 1401421-009B NO2/NO3-W-353.2 df - no2/no3 1 SEL Analytes: NO3NO2N 8260-W VOCFridge 1401421-009C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 1/23/2014 0750h 1/24/2014 0911h 300.0-W V df-wc 1401421-010A TW4-30_01232014 Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1401421-010B 1 SEL Analytes: NO3NO2N 8260-W **VOCFridge** 1401421-010C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 1401421-011A TW4-31 01232014 1/23/2014 0756h 1/24/2014 0911h 300.0-W df - wc Aqueous 1 SEL Analytes: CL 1401421-011B NO2/NO3-W-353.2 df - no2/no3 1 SEL Analytes: NO3NO2N VOCFridge 1401421-011C 8260-W Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 TW4-34_01232014 1/23/2014 0805h 1/24/2014 0911h 300.0-W **V** df - wc 1401421-012A Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1401421-012B 1 SEL Analytes: NO3NO2N Printed: 1/24/2014 FOR LABORATORY USE ONLY [fill out on page 1]: %M RT 🗌 CN TAT QC \square HOK HOK HOK COC Emailed

WORK O	RDER Summary				Work	Order: 14	01421	Page 3 of 3
Client:	Energy Fuels Resources, Inc.				Due	e Date: 2/4/	2014	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1401421-012C	TW4-34_01232014	1/23/2014 0805h	1/24/2014 0911h	8260-W Test Group: 8260-W	Aqueous '-Custom; # of Analytes: 4 / # oj	f Surr: 4	VOCFridge	3
1401421-013A	TW4-23_01232014	1/23/2014 0815h	1/24/2014 0911h	300.0-W 1 SEL Analytes: CL	Aqueous	V	df-wc	1
1401421-013B				NO2/NO3-W-353.2 1 SEL Analytes: NO	3NO2N	V	df - no2/no3	
1401421-013C				8260-W Test Group: 8260-W	-Custom; # of Analytes: 4 / # oj	f Surr: 4	VOCFridge	3
1401421-014A	TW4-08_01232014	1/23/2014 0845h	1/24/2014 0911h	300.0-W 1 SEL Analytes: CL	Aqueous	\checkmark	df-wc	1
1401421-014B				NO2/NO3-W-353.2 1 SEL Analytes: NO	3NO2N	V	df - no2/no3	•
1401421-014C				8260-W Test Group: 8260-W	7-Custom; # of Analytes: 4 / # o	f Surr: 4	VOCFridge	3
1401421-015A	Trip Blank	1/21/2014	1/24/2014 0911h	8260-W Test Group: 8260-W	Aqueous Y-Custom; # of Analytes: 4 / # o	f Surr: 4	VOCFridge	3

HOK_

AMERICAN WEST ANALYTICAL LABORATORIES

CHAIN OF CUSTODY

146/421

$A \blacksquare$	463 W. 3600 S. SALT LAKE C Phone # (801) 263-8686 Toll Fri	Erry, UT 84115 EE # (888) 263-								ND REPOR	ווא פאוז	VITS (PC	L) UNL		ICALLY RE	DATA WILL BE REPORTED USING AVAL'S QUESTED OTHERWISE ON THIS CHAIN OF ON.	AWAL LAB SAMPLE SET # Page 1 of 2
	FAX # (801) 263-8687 EMAIL WWW.AWAL-LABS	AWAL®AWAL-LAI	BS.COM			QC	Lev i	EL:			Т		AROUI	ND TIME	l :	Unless other arrangements have been made, signed reports will be pmailed by 5:00 pm on the day they are due.	Due Date:
CLIENT:	Energy Fuels Resources, Inc. 6425 S. Hwy. 191 Blanding, UT 84511															X INCLUDE EDD: LOCUS UPLOAD EXCEL FIELD FILTERED FOR:	LABORATORY USE ONLY SAMPLES WERE SHEPPED OF HAND DELIVERED
CONTACT:	Garrin Palmer (435) 678-2221 CPUL#:															FOR COMPLIANCE WITH:	2. Ambient on Chilled
PHONE #: EMAIL:	gpalmer@energyfuels.com; KWeinel@energyfuels.com dturk@energyfuels.com	is.com;											ļ		1.	□ NELAP □ RCRA □ CWA □ SDWA	3 TEMPRATURE 3 5 °C 4 RECEIVED BROKEN/LEAKING (DOROPERLY SEATE)
PROJECT NAME: PROJECT #:	1st Quarter Chloroform 2014			RS		3.2)	300.0)									☐ ELAP / A2LA☐ NLLAP☐ Non-Compliance☐	Y (N) 5 Paperaly Passenved
PO #: SAMPLER NAME:	Tanner Holliday, Garrin Palmer			CONTAINE	MATRIX	103 (353.2)	(4500 or 30	(8260C)								OTHER: KNOWN HAZARDS	Y N SHECKED AT BUNCH Y N 5 RECEIVED WITHIN
	SAMPLE ID:	DATE SAMPLED	TIME SAMPLED	# 6 #	SAMPLE	NO2/NO3	បី	VOCs								& SAMPLE COMMENTS	HODING TIMES N
W4-03_0122201	14	1/22/2014	943	5	W	Х	Х	X	+								
W4-12_0122201	14	1/22/2014	1003	5	W	Х	Х	X									COC TAPE WAS
W4-28_0122201	14	1/22/2014	1008	5	W	Х	Х	Х									1 Elbesent on Outer Package Y N NA
W4-32_012220	14	1/22/2014	1015	5	w	х	X	Х									FOR CO. V. STREET, E. S. D. S. L. S.
W4-13_012220	14	1/22/2014	1023	5	w	х	x	х	Т								2 UNGROKEN ON GUTER PACKAGE Y N NA
W4-14_0122201	14	1/22/2014	1028	5	w	х	Х	х	T								3 PRESENT ON SAMPLE Y N (NA)
W4-65_0122201	14	1/22/2014	1008	5	w	Х	х	Х									4 Undroxen on Sauple
W4-03R_01212	014	1/21/2014	928	5	w	Х	x	х	T					\top			Y N (WA)
W4-27_012320	14	1/23/2014	742	5	w	х	х	х	T				\neg				Discrepangies Between Sauple
W4-30_012320	14	1/23/2014	750	5	W	х	х	х	T								LABELS AND COC RECORD?
W4-31_012320	14	1/23/2014	756	5	w	х	X	х	T								
W4-34_012320	14	1/23/2014	805	5	w	х	x	х	\top								
W4-23_012320	14	1/23/2014	815	5	w	х	х	х									
ELINQUISHED BY:	unner Hollisher	DATE: 1/23/2014	RECEIVED BY: SIGNATURE									DATE:				SPECIAL INSTRUCTIONS:	
	inner Holliday	TIME: 1030	PRINT NAME:									TIME:					
ELINQUISHED BY:	J	DATE:	RECEIVED BY	, 8			d	L			7	DATE:	24/	14		See the Analytical Scope of Wo	ork for Reporting Limits and VOC
ROST NAME:		Тіме:	Paper Name C			14				1		TOME	9	11		The state of the s	
RELINQUISHED BY:		DATE:	RECEIVED BY:			160	1	1	-	7		DATE:					
989		TIME:										Тіме:					
RELINQUISHED BY:		DATE:	PRINT NAME: RECEIVED BY:								\neg	DATE:					
GIGNATURE		Тіме:	SIGNATURE PRINT NAME:						_	-		Тіме:					

AMERICAN WEST ANALYTICAL LABORATORIES

CHAIN OF CUSTODY

ALL ANALYSIS WILL BE CONDUCTED USING NELAP ACCREDITED METHODS AND ALL DATA WILL BE REPORTED USING AWAL'S 463 W. 3600 S. SALT LAKE CITY, UT 84115 STANDARD ANALYTE LISTS AND REPORTING LIMITS (PQL) UNLESS SPECIFICALLY REQUESTED OTHERWISE ON THIS CHAIN OF CUSTODY AND/OR ATTACHED DOCUMENTATION.

PHONE # (801) 263-8686 TOLL FREE # (888) 263-8686 UNLESS OTHER ARRANGEMENTS HAVE DUE DATE: QC LEVEL: FAX # (801) 263-8687 EMAIL AWAL@AWAL-LABS.COM TURN AROUND TIME: BEEN MADE, SIGNED REPORTS WILL BE EMAILED BY 5:00 PM ON THE DAY THEY WWW,AWAL-LABS.COM 3 STANDARD ARE DUE LABORATORY USE ONLY Energy Fuels Resources, Inc. CLIENT: INCLUDE EDD: LOCUS UPLOAD 6425 S. Hwy. 191 ADDRESS: EXCEL FIELD FILTERED FOR: Blanding, UT 84511 Garrin Palmer CONTACT: AMBIENT OR CHILLED FOR COMPLIANCE WITH: (435) 678-2221 TEMPERATURE 3.5 RC PHONE #: CELL #: □ NELAP gpalmer@energyfuels.com; KWeinel@energyfuels.com; RCRA dturk@energyfuels.com CWA 4 RECEIVED BROKEN/LEAKING **\$DWA** (IMPROPERLY SEALED) 1st Quarter Chloroform 2014 PROJECT NAME: ELAP / A2LA NLLAP 300.09 NO2/NO3 (353.2) PROJECT #: NON-COMPLIANCE PROPERLY PRESERVED OTHER: (8260C) PO #: CHECKED AT BENCH 10 (4500 Tanner Holliday, Garrin Palmer SAMPLER NAME: KNOWN HAZARDS 6 Received Within VOCs DATE TIME ប SAMPLE ID: SAMPLED SAMPLED SAMPLE COMMENTS TW4-08 01232014 1/23/2014 845 X X X TRIP BLANK 1/21/2014 X SAW HAT DOD 1 PRESENT ON OUTER PACKAGE TEMP BLANK 1/23/2014 Y N NA 2 JUNGROKEN ON OUTER PACKAGE Y N NA 3 PRESENT ON SAMPLE DISCREPANCIES BETWEEN SAMPLE LABRES AND GOC RECORD? RECEIVED BY: DATE: SPECIAL INSTRUCTIONS: 1/23/2014 SIGNATURE TIME: 1030 Hollidan PRINT NAME: RECEIVED BY: 0 See the Analytical Scope of Work for Reporting Limits and VOC RELINQUISHED BY: DATE: SIGNATURE SHINATURE analyte list. TIME: PRINT NAME: DATE: RELINQUISHED BY: RECEIVED BY DATE SIGNATURE SIGNATURE TIME: TIME: PRINT NAME: PRINT NAME: RELINQUISHED BY: RECEIVED BY DATE: SIGNATURE SIGNATURE TIME: Тіме: PRINT NAME: PRINT NAME:

AWAL - Analytical Scope of Work White Mesa Mill Blanding Utah Page 11 of 13

Contaminant	Analytical Methods	Reporting Limit	Maximum Holding	Sample Preservation	Sample Temperature
	to be Used		Times	Requirements	Requirements
General Inorganics		10,80(2005000)			
Chloride	A4500-C1	1 mg/L	28 days	None	≤6°C
	B or				
	A4500-C1				
i i	E	_			
	or E300.0	\rightarrow			
Sulfate	A4500-	1 mg/L	28 days	None	≤6°C
	SO4 E or				
- ·	E300.0	4 -			
Carbonate as CO3	A2320 B	1 mg/L	14 days	None	₹6°C
Dicarbonate as HCO3	A2320 B	1 mg/L	14 days	None	ownerstand on the second
Volatile Organic Compounds				LICIA XX.0	1.600
Carbon Tetrachloride	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
	Or CVV02600				R.
Chloroform	SW8260C SW8260B	10	14 3	TICI to TICO	≤6°C
Chlorotorm	1	1.0 μg/L	14 days	HCl to pH<2	> 0 C
	or SW8260C				
Dichloromethane	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
(Methylene Chloride)	or	1.0 μg/L	14 days	Tier to pri 2	1200
(Memylene Chioride)	SW8260C				
Chloromethane	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
Chiorometatare	or	1.0 Mg/L	l i aays	1101 to pii 2	-00
	SW8260C				
SVOCs - Tailings Impoundn		Only			
1,2,4-Trichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	<5°C
1,2-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,3-Dichlorobensene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,4-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1-Methylnaphthalene	SW8270D	<10 ug/L	7/40 days	Mone	≤6°C
2,4,5-Trichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4,6-Trichlorophenol	SW827QD	<10 ug/L	7/40 days	None	≤6°C
2,4-Dichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4-Dimethylphenol	SW8270D	<10.ug/L	1/40 days	None	≤6°C
2,4-Dinitrophenol	SW8270D	<20 ug/K	7/40 days	None	≤6°C
2,4-Dinitrotoluene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,6-Dinitrotoluene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Chloronaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Chlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Methylnaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Methylphenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Nitrophenol	SW8270D	<10 ug/L	7/40 days	None	< 6°C
3&4-Methylphenol	SW8270D	<10 ug/L	7/40 days	None	€6°C
3,3'-Dichlorobenzidine	SW8270D	<10 ug/L	7/40 days	None	≥6℃
4.6-Dinitro-2-methylphenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C

Preservation Check Sheet

Sample Set Extension and pH

		_			_	T -	T. Pac	1	nsion an	- prair			T				_	
Analysis	Preservative	1	2	3	4	5	6	1	8	9	10	11	12	13	14			
Ammonia	pH <2 H ₂ SO ₄									Ĭí.								
COD	pH <2 H ₂ SO ₄																	
Cyanide	pH >12 NaOH																	
Metals	pH <2 HNO ₃																	
NO ₂ & NO ₃	pH <2 H ₂ SO ₄	yes	Ves	Ves	Ves	Ves	Ves	Ves	Ves	1/05	Ves	Ves	Ves	Ves	Ves			
O&G	pH <2 HCL	/	7	7	/	1	/-/	/	7	1	7	1	/	1	1			
Phenols	pH <2 H ₂ SO ₄																	
Sulfide	pH > 9NaOH, Zn Acetate																	
TKN	pH <2 H ₂ SO ₄																	
T PO ₄	pH <2 H ₂ SO ₄																	
	-																	
		ļ			-				1									
																	1	

Procedure:

- 1) Pour a small amount of sample in the sample lid
- 2) Pour sample from Lid gently over wide range pH paper
- 3) Do Not dip the pH paper in the sample bottle or lid
- 4) If sample is not preserved, properly list its extension and receiving pH in the appropriate column above
- 5) Flag COC, notify client if requested
- 6) Place client conversation on COC
- 7) Samples may be adjusted

Frequency:

All samples requiring preservation

- * The sample required additional preservative upon receipt.
- + The sample was received unpreserved
- ▲ The Sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH < 2 due to the sample matrix
- The sample pH was unadjustable to a pH > ____ due to the sample matrix interference

Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191

Blanding, UT 84511 TEL: (435) 678-2221

1st Quarter Chloroform 2014

Dear Garrin Palmer:

Lab Set ID: 1401525

463 West 3600 South Salt Lake City, UT 84115

American West Analytical Laboratories received 18 sample(s) on 1/31/2014 for the analyses presented in the following report.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 American West Analytical Laboratories (AWAL) is accredited by The National Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is state accredited in Colorado, Idaho, New Mexico, and Missouri.

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha

QA Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Thank You,

Digitally signed by Kyle F. Gross DN: cn=Kyle F. Gross, o=AWAL, ou=AWAL_taboratory Director, email=kyle@awal-labs.com, c=US Date: 2014.02.10 11:55:31-07'00'

Approved by:

Laboratory Director or designee

SAMPLE SUMMARY

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Set ID:

1401525

Date Received:

1/31/2014 919h

	Lab Sample ID	Client Sample ID	Date Colle	cted	Matrix	Analysis
463 West 3600 South	1401525-001A	TW4-09_01292014	1/29/2014	740h	Aqueous	Anions, E300.0
Salt Lake City, UT 84115	1401525-001B	TW4-09_01292014	1/29/2014	740h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1401525-001C	TW4-09_01292014	1/29/2014	740h	Aqueous	VOA by GC/MS Method 8260C/5030C
Phone: (801) 263-8686	1401525-002A	MW-32_01292014	1/29/2014	1305h	Aqueous	Anions, E300.0
Toll Free: (888) 263-8686	1401525-002B	MW-32_01292014	1/29/2014	1305h	Aqueous	Nitrite/Nitrate (as N), E353.2
Fax: (801) 263-8687	1401525-002C	MW-32_01292014	1/29/2014	1305h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1401525-003A	TW4-25_01272014	1/27/2014	1338h	Aqueous	Anions, E300.0
	1401525-003B	TW4-25_01272014	1/27/2014	1338h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1401525-003C	TW4-25_01272014	1/27/2014	1338h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1401525-004A	TW4-26_01292014	1/29/2014	750h	Aqueous	Anions, E300.0
Kyle F. Gross	1401525-004B	TW4-26_01292014	1/29/2014	750h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	1401525-004C	TW4-26_01292014	1/29/2014	750h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1401525-005A	TW4-06_01292014	1/29/2014	758h	Aqueous	Anions, E300.0
Jose Rocha	1401525-005B	TW4-06_01292014	1/29/2014	758h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	1401525-005C	TW4-06_01292014	1/29/2014	758h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1401525-006A	TW4-16_01292014	1/29/2014	805h	Aqueous	Anions, E300.0
	1401525-006B	TW4-16_01292014	1/29/2014	805h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1401525-006C	TW4-16_01292014	1/29/2014	805h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1401525-007A	TW4-05_01302014	1/30/2014	718h	Aqueous	Anions, E300.0
	1401525-007B	TW4-05_01302014	1/30/2014	718h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1401525-007C	TW4-05_01302014	1/30/2014	718h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1401525-008A	TW4-24_01272014	1/27/2014	1355h	Aqueous	Anions, E300.0
	1401525-008B	TW4-24_01272014	1/27/2014	1355h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1401525-008C	TW4-24_01272014	1/27/2014	1355h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1401525-009A	TW4-18_01302014	1/30/2014	733h	Aqueous	Anions, E300.0
	1401525-009B	TW4-18_01302014	1/30/2014	733h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1401525-009C	TW4-18_01302014	1/30/2014	733h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1401525-010A	TW4-33_01302014	1/30/2014	750h	Aqueous	Anions, E300.0
	1401525-010B	TW4-33_01302014	1/30/2014	750h	Aqueous	Nitrite/Nitrate (as N), E353.2

Report Date: 2/10/2014 Page 2 of 49

All analyses anoticiable to the CWA SDWA and RCRA are performed in accordance to NELAC nontocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

1st Quarter Chloroform 2014

Lab Set ID:

1401525

Date Received: 1/31/2014 919h

463 West 3600 South 3alt Lake City, UT 84115 Phone: (801) 263-8686 Fax: (801) 263-8687 mail: awal@awal-labs.com 1401525-013C TW4-33_01302014 1/30/	
3alt Lake City, UT 84115 1401525-011A TW4-19_01272014 1/27/2014 1510h Aqueous Anions, E300.0 1401525-011B TW4-19_01272014 1/27/2014 1510h Aqueous Nitrite/Nitrate (as N 8260C/5030C Phone: (801) 263-8686 1401525-012A TW4-04_01272014 1/27/2014 1433h Aqueous Anions, E300.0 Foll Free: (888) 263-8686 1401525-012B TW4-04_01272014 1/27/2014 1433h Aqueous Nitrite/Nitrate (as N 8260C/5030C 3-mail: awal@awal-labs.com 1401525-013A MW-04_01272014 1/27/2014 1425h Aqueous Anions, E300.0 web: www.awal-labs.com 1401525-013C MW-04_01272014 1/27/2014 1425h Aqueous Nitrite/Nitrate (as N N N N N N N N N N N N N N N N N N N	ethod
1401525-011C TW4-19_01272014 1/27/2014 1510h Aqueous VOA by GC/MS M 8260C/5030C	
Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 3-mail: awal@awal-labs.com Web: www.awal-labs.com Fax: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 1401525-012C TW4-04_01272014 TW4-0	I), E353.2
Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 3-mail: awal@awal-labs.com Toll Free: (888) 263-8687 401525-012C TW4-04_01272014 TW4-04_	ethod
Toll Free: (888) 263-8686 Fax: (801) 263-8687 3-mail: awal@awal-labs.com Toll Free: (888) 263-8686 Fax: (801) 263-8687 401525-012C TW4-04_01272014 TW4-04_0	
Fax: (801) 263-8687 3-mail: awal@awal-labs.com 1401525-013A MW-04_01272014 1/27/2014	I), E353.2
3-mail: awal@awal-labs.com 1401525-013A MW-04_01272014 1/27/2014 1425h Aqueous Anions, E300.0 1/27/2014 1425h Aqueous Nitrite/Nitrate (as N web: www.awal-labs.com 1401525-013C MW-04_01272014 1/27/2014 1425h Aqueous VOA by GC/MS M	ethod
1401525-013B MW-04_01272014 1/27/2014 1425h Aqueous Nitrite/Nitrate (as N web: www.awal-labs.com 1401525-013C MW-04_01272014 1/27/2014 1425h Aqueous VOA by GC/MS M	
web: www.awal-labs.com 1401525-013C MW-04_01272014 1/27/2014 1425h Aqueous VOA by GC/MS M	
	l), E353.2
8260C/5030C	ethod
1401525-014A MW-26_01272014 1/27/2014 1420h Aqueous Anions, E300.0	
Kyle F. Gross 1401525-014B MW-26_01272014 1/27/2014 1420h Aqueous Nitrite/Nitrate (as N), E353.2
Laboratory Director 1401525-014C MW-26_01272014 1/27/2014 1420h Aqueous VOA by GC/MS M 8260C/5030C	ethod
1401525-015A TW4-22_01272014 1/27/2014 1403h Aqueous Anions, E300.0	
Jose Rocha 1401525-015B TW4-22_01272014 1/27/2014 1403h Aqueous Nitrite/Nitrate (as N	I), E353.2
QA Officer 1401525-015C TW4-22_01272014 1/27/2014 1403h Aqueous VOA by GC/MS M 8260C/5030C	ethod
1401525-016A TW4-20_01272014 1/27/2014 1412h Aqueous Anions, E300.0	
1401525-016B TW4-20_01272014 1/27/2014 1412h Aqueous Nitrite/Nitrate (as N), E353.2
1401525-016C TW4-20_01272014 1/27/2014 1412h Aqueous VOA by GC/MS M 8260C/5030C	ethod
1401525-017A TW4-70_01292014 1/29/2014 1305h Aqueous Anions, E300.0	
1401525-017B TW4-70_01292014 1/29/2014 1305h Aqueous Nitrite/Nitrate (as N), E353.2
1401525-017C TW4-70_01292014 1/29/2014 1305h Aqueous VOA by GC/MS M 8260C/5030C	ethod
1401525-018A Trip Blank 1/27/2014 Aqueous VOA by GC/MS M 8260C/5030C	ethod

Inorganic Case Narrative

Client: Contact:

Garrin Palmer

Project: Lab Set ID: 1st Quarter Chloroform 2014

Energy Fuels Resources, Inc.

1401525

463 West 3600 South Salt Lake City, UT 84115 **Sample Receipt Information:**

Date of Receipt:

1/31/2014

Date(s) of Collection:

1/27, 1/29 & 1/30/2014

Sample Condition: **C-O-C** Discrepancies:

Intact None

Phone: (801) 263-8686 Holding Time and Preservation Requirements: The analysis and preparation of all Toll Free: (888) 263-8686

Fax: (801) 263-8687

≥-mail: awal@awal-labs.com

web: www.awal-labs.com

preserved. Preparation and Analysis Requirements: The samples were analyzed following the

samples were performed within the method holding times. All samples were properly

methods stated on the analytical reports. Analytical QC Requirements: All instrument calibration and calibration check

requirements were met. All internal standard recoveries met method criterion.

Kyle F. Gross **Laboratory Director**

Batch OC Requirements: MB, LCS, MS, MSD, RPD:

Jose Rocha **QA** Officer Method Blanks (MB): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Samples (LCS): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicates (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Corrective Action: None required.

Volatile Case Narrative

Client: Contact: Project:

Lab Set ID:

Energy Fuels Resources, Inc.

Garrin Palmer

1st Quarter Chloroform 2014

1401525

463 West 3600 South 3alt Lake City, UT 84115 **Sample Receipt Information:**

Date of Receipt:

1/31/2014

Date of Collection:

1/27, 1/29 & 1/30/2014

Sample Condition: C-O-C Discrepancies: Intact

Method:

None SW-846 8260C/5030C

Analysis:

Volatile Organic Compounds

Fax: (801) 263-8687

Phone: (801) 263-8686

Toll Free: (888) 263-8686

mails aveal@aveal laba aam

web: www.awal-labs.com

-mail: awal@awal-labs.com

General Set Comments: Multiple target analytes were observed above reporting limits.

Holding Time and Preservation Requirements: All samples were received in appropriate containers and properly preserved. The analysis and preparation of all samples were performed within the method holding times following the methods stated on the analytical reports.

Kyle F. Gross Laboratory Director **Analytical QC Requirements:** All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Jose Rocha QA Officer **Batch QC Requirements:** MB, LCS, MS, MSD, RPD, and Surrogates:

Method Blanks (MBs): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Sample (LCSs): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicate (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Surrogates: All surrogate recoveries were within established limits.

Corrective Action: None required.

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

Client:

Project:

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Garrin Palmer

Dept: WC

QC Type: DUP

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	1401525-010BDUP	Date Analyzed:	02/07/201	4 1617h										
Test Code:	NO2/NO3-W-353.2													
Nitrate/Nitrite (a	s N)	2.66	mg/L	E353,2	0.0252	0.100					2.56	3.75	20	

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

Client:

'roject:

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact:

Garrin Palmer

Dept:

WC

QC Type: LCS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	LCS-R64539 300.0-W	Date Analyzed:	02/03/201	14 1636h										
Chloride		4.90	mg/L	E300.0	0.0114	0.100	5.000	0	97.9	90 - 110				
Lab Sample ID: Test Code:	LCS-R64707 300.0-W	Date Analyzed:	02/06/201	14 1954h										
Chloride		4.88	mg/L	E300,0	0.0114	0.100	5.000	0	97.5	90 - 110				
Lab Sample ID: Test Code:	LCS-R64463 NO2/NO3-W-353.2	Date Analyzed:	01/31/201	14 1511h										
Nitrate/Nitrite (a	s N)	0.955	mg/L	E353.2	0.00252	0.100	1.000	0	95.5	90 - 110				
Lab Sample ID: Test Code:	LCS NO3-R64726 NO2/NO3-W-353.2	Date Analyzed:	02/07/201	14 1554h										
Nitrate/Nitrite (a	s N)	0.972	mg/L	E353.2	0.00252	0.0100	1.000	0	97.2	90 - 110				

Client:

Project:

Energy Fuels Resources, Inc.

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **OA** Officer

QC SUMMARY REPORT

Contact: Garrin Palmer

WC Dept:

Lab Set ID: 1401525 1st Quarter Chloroform 2014 QC Type: MBLK

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	MB-R64539 300.0-W	Date Analyzed:	02/03/201	4 1609h										
Chloride		< 0.100	mg/L	E300.0	0.0114	0.100								
Lab Sample ID: Test Code:	MB-R64707 300.0-W	Date Analyzed:	02/06/201	4 1931h										
Chloride		< 0.100	mg/L	E300.0	0.0114	0.100								
Lab Sample ID: Test Code:	MB-R64463 NO2/NO3-W-353.2	Date Analyzed:	01/31/201	4 1509h										
Nitrate/Nitrite (a	s N)	< 0.100	mg/L	E353.2	0.00252	0.100								
Lab Sample ID: Test Code:	MB-R64726 NO2/NO3-W-353,2	Date Analyzed:	02/07/201	4 1551h										
Nitrate/Nitrite (a	as N)	< 0.0100	mg/L	E353.2	0.00252	0.0100								THE STATE OF THE S
														110

Client:

Project:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Garrin Palmer

Dept: WC

QC Type: MS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1401525-001AMS 300.0-W	Date Analyzed:	02/03/201	14 2300h										
Chloride		259	mg/L	E300.0	0.570	5.00	250.0	22	94.6	90 - 110				
Lab Sample ID: Test Code:	1401525-003AMS 300.0-W	Date Analyzed:	02/06/201	14 2041h										
Chloride		578	mg/L	E300.0	1.14	10.0	500.0	85.7	98.6	90 - 110				
Lab Sample ID: Test Code:	1401525-003BMS NO2/NO3-W-353.2	Date Analyzed:	01/31/201	14 1520h										
Nitrate/Nitrite (a	s N)	11.9	mg/L	E353.2	0.0252	1.00	10.00	2.16	97.6	90 - 110				
Lab Sample ID: Test Code:	1401525-008BMS NO2/NO3-W-353.2	Date Analyzed:	01/31/201	14 1552h										
Nitrate/Nitrite (a	s N)	124	mg/L	E353.2	0.252	10.0	100.0	31.6	92.7	90 - 110				

Client:

Project:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Garrin Palmer Contact:

WC

Dept: QC Type: MSD

	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
1401525-001AMSD 300.0-W	Date Analyzed:	02/03/201	4 2327h										
	264	mg/L	E300.0	0.570	5.00	250.0	22	96.7	90 - 110	259	2.06	20	
1401525-003AMSD 300.0-W	Date Analyzed:	02/06/201	4 2104h										
	572	mg/L	E300.0	1.14	10.0	500.0	85.7	97.3	90 - 110	578	1.14	20	
1401525-003BMSD NO2/NO3-W-353.2	Date Analyzed:	01/31/201	4 1521h										
s N)	12.5	mg/L	E353.2	0.0252	1.00	10.00	2.16	103	90 - 110	11.9	4.51	10	
1401525-008BMSD NO2/NO3-W-353.2	Date Analyzed:	01/31/201	4 1554h										
(N)	131	mg/L	E353.2	0.252	10.0	100.0	31.6	99.8	90 - 110	124	5.55	10	
	300.0-W 1401525-003AMSD 300.0-W 1401525-003BMSD NO2/NO3-W-353.2 3 N) 1401525-008BMSD	1401525-001AMSD Date Analyzed: 300.0-W 264 1401525-003AMSD Date Analyzed: 300.0-W 572 1401525-003BMSD Date Analyzed: NO2/NO3-W-353.2 Date Analyzed: 1401525-008BMSD Date Analyzed: NO2/NO3-W-353.2 Date Analyzed:	1401525-001AMSD Date Analyzed: 02/03/201 300.0-W 264 mg/L 1401525-003AMSD Date Analyzed: 02/06/201 300.0-W 572 mg/L 1401525-003BMSD Date Analyzed: 01/31/201 NO2/NO3-W-353.2 Date Analyzed: 01/31/201 1401525-008BMSD Date Analyzed: 01/31/201 NO2/NO3-W-353.2 Date Analyzed: 01/31/201	1401525-001AMSD Date Analyzed: 02/03/2014 2327h 300.0-W 264 mg/L E300.0 1401525-003AMSD Date Analyzed: 02/06/2014 2104h 300.0-W 572 mg/L E300.0 1401525-003BMSD Date Analyzed: 01/31/2014 1521h NO2/NO3-W-353.2 Date Analyzed: 01/31/2014 1554h NO2/NO3-W-353.2 Date Analyzed: 01/31/2014 1554h	1401525-001AMSD 300.0-W 264 mg/L E300.0 0.570 1401525-003AMSD Date Analyzed: 02/06/2014 2104h 300.0-W 572 mg/L E300.0 1.14 1401525-003BMSD Date Analyzed: 01/31/2014 1521h NO2/NO3-W-353.2 Date Analyzed: 01/31/2014 1554h NO2/NO3-W-353.2 Date Analyzed: 01/31/2014 1554h	Result Units Method MDL Limit 1401525-001AMSD 300.0-W Date Analyzed: 02/03/2014 2327h 0.570 5.00 1401525-003AMSD 300.0-W Date Analyzed: 02/06/2014 2104h 02/06/2014 2104h 0.00 1.14 10.0 1401525-003BMSD NO2/NO3-W-353.2 Date Analyzed: 01/31/2014 1521h 0.0252 1.00 1401525-008BMSD NO2/NO3-W-353.2 Date Analyzed: 01/31/2014 1554h 0.0252 1.00	Result Units Method MDL Limit Spiked	Result Units Method MDL Limit Spiked Amount	Note Note	No. No.	No. No.	Mesult Units Method MDL Limit Spiked Amount MREC Limits Amt Method MDL Limit Spiked Amount Method MDL Limit Spiked Method Me	Method MDL Limit Spiked Amount WREC Limits Amt WRPD Limit Limit Limit Spiked Amount WREC Limits Amt WRPD Limit Limit Limit Limit Spiked Amount WREC Limits Amt WRPD Limit Limit Limit Limit Limit Limit Spiked Amount WREC Limits Amt WRPD Limit L

Client:

Project:

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1401525

1st Quarter Chloroform 2014

Contact: Garrin Palmer

MSVOA Dept:

QC Type: LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: LCS VOC 013114A Test Code: 8260-W	Date Analyzed:	01/31/201	4 720h										
Chloroform	22.2	μg/L	SW8260C	0.277	2.00	20.00	0	111	67 - 132				
Methylene chloride	21.3	$\mu g/L$	SW8260C	0.155	2.00	20.00	0	106	32 - 185				
Surr: 1,2-Dichloroethane-d4	56.1	μg/L	SW8260C			50.00		112	76 - 138				
Surr: 4-Bromofluorobenzene	50.8	$\mu g/L$	SW8260C			50.00		102	77 - 121				
Surr: Dibromofluoromethane	53.8	μ g/L	SW8260C			50.00		108	67 - 128				
Surr: Toluene-d8	50.2	μg/L	SW8260C			50.00		100	81 - 135				
Lab Sample ID: LCS VOC 020114A Test Code: 8260-W	Date Analyzed:	02/01/201	4 1826h										
Chloroform	22.8	μg/L	SW8260C	0.277	2.00	20.00	0	114	67 - 132				
Methylene chloride	22.1	μg/L	SW8260C	0.155	2.00	20.00	0	110	32 - 185				
Surr: 1,2-Dichloroethane-d4	58.7	μg/L	SW8260C			50.00		117	76 - 138				
Surr: 4-Bromofluorobenzene	50.2	μg/L	SW8260C			50.00		100	77 - 121				
Surr: Dibromofluoromethane	55.5	μg/L	SW8260C			50.00		111	67 - 128				
Surr: Toluene-d8	50.3	μg/L	SW8260C			50.00		101	81 - 135				

463 West 3600 South

merican West

Lab Set ID: 1401525

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

Client:

Project:

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Garrin Palmer

Dept: MSVOA

QC Type: MBLK

Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Date Analyzed:	01/31/201	4 758h										
< 1.00	μg/L	SW8260C	0.137	1.00								
< 1.00		SW8260C	0.277	1.00								
< 1.00	μg/L	SW8260C	0.127	1.00								
< 1.00	μg/L	SW8260C	0.155	1.00								
57.0	μg/L	SW8260C			50.00		114	76 - 138				
50.3	μg/L	SW8260C			50.00		101	77 - 121				
53.5	μ g/L	SW8260C			50.00		107	67 - 128				
49.8	μg/L	SW8260C			50.00		99.5	81 - 135				
Date Analyzed:	02/01/201	4 1904h										
				4.00.00								-
< 1.00	μg/L	SW8260C	0.137	1.00								
< 1.00 < 1.00	μg/L μg/L	SW8260C SW8260C	0.137 0.277	1.00 1.00								
< 1.00	μg/L	SW8260C	0.277	1.00								
< 1.00 < 1.00	μg/L μg/L	SW8260C SW8260C	0.277 0.127	1.00 1.00	50.00		118	76 - 138				
< 1.00 < 1.00 < 1.00	μg/L μg/L μg/L	SW8260C SW8260C SW8260C	0.277 0.127	1.00 1.00	50.00 50.00		118 97.5	76 - 138 77 - 121				
< 1.00 < 1.00 < 1.00 59.1	μg/L μg/L μg/L μg/L	SW8260C SW8260C SW8260C SW8260C	0.277 0.127	1.00 1.00								
	Date Analyzed: < 1.00 < 1.00 < 1.00 < 1.00 57.0 50.3 53.5 49.8	Date Analyzed: 01/31/201 < 1.00 μg/L < 1.00 μg/L < 1.00 μg/L 57.0 μg/L 50.3 μg/L 53.5 μg/L 49.8 μg/L	Date Analyzed: 01/31/2014 758h < 1.00 μg/L SW8260C < 1.00 μg/L SW8260C < 1.00 μg/L SW8260C < 1.00 μg/L SW8260C 57.0 μg/L SW8260C 50.3 μg/L SW8260C 53.5 μg/L SW8260C 49.8 μg/L SW8260C	Date Analyzed: 01/31/2014 758h < 1.00 μg/L SW8260C 0.137 < 1.00	Result Units Method MDL Limit Date Analyzed: 01/31/2014 758h Limit Limit < 1.00	Result Units Method MDL Limit Spiked Date Analyzed: 01/31/2014 758h 1.00	Result Units Method MDL Limit Spiked Amount Date Analyzed: 01/31/2014 758h	Result Units Method MDL Limit Spiked Amount %REC Date Analyzed: 01/31/2014 758h	Result Units Method MDL Limit Spiked Amount %REC Limits Date Analyzed: 01/31/2014 758h <td>Result Units Method MDL Limit Spiked Amount %REC Limits Amt Date Analyzed: 01/31/2014 758h </td> <td>Result Units Method MDL Limit Spiked Amount %REC Limits Amt % RPD Date Analyzed: 01/31/2014 758h </td> <td>Result Units Method MDL Limit Spiked Amount %REC Limits Amt % RPD Limit Date Analyzed: 01/31/2014 758h </td>	Result Units Method MDL Limit Spiked Amount %REC Limits Amt Date Analyzed: 01/31/2014 758h	Result Units Method MDL Limit Spiked Amount %REC Limits Amt % RPD Date Analyzed: 01/31/2014 758h	Result Units Method MDL Limit Spiked Amount %REC Limits Amt % RPD Limit Date Analyzed: 01/31/2014 758h

Client:

Project:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact:

Contact: Garrin Palmer **Dept:** MSVOA

QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1401525-001CMS	Date Analyzed:	01/31/20	14 1217h										
Test Code: 8260-W													
Chloroform	22.0	$\mu g/L$	SW8260C	0.277	2.00	20.00	0	110	50 - 146				
Methylene chloride	19.4	μg/L	SW8260C	0.155	2.00	20.00	0	96.9	30 - 192				
Surr: 1,2-Dichloroethane-d4	58.1	μg/L	SW8260C			50.00		116	72 - 151				
Surr: 4-Bromofluorobenzene	48.2	μg/L	SW8260C			50.00		96.4	80 - 128				
Surr: Dibromofluoromethane	54.0	μg/L	SW8260C			50.00		108	80 - 124				
Surr: Toluene-d8	48.4	μg/L	SW8260C			50.00		96.8	77 - 129				
Lab Sample ID: 1401538-005AMS	Date Analyzed:	02/01/20	14 2006h										
Test Code: 8260-W													
Chloroform	20.7	μg/L	SW8260C	0.277	2.00	20.00	0	104	50 - 146				
Methylene chloride	18.7	μg/L	SW8260C	0.155	2.00	20.00	0	93.6	30 - 192				
Surr: 1,2-Dichloroethane-d4	58.5	μ g/L	SW8260C			50.00		117	72 - 151				
Surr: 4-Bromofluorobenzene	47.2	μg/L	SW8260C			50.00		94.5	80 - 128				
Surr: Dibromofluoromethane	54.4	$\mu g/L$	SW8260C			50.00		109	80 - 124				
Surr: Toluene-d8	47.7	μg/L	SW8260C			50.00		95.3	77 - 129				

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

Client:

Project:

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Garrin Palmer

Dept:

MSVOA

QC Type: MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1401525-001CMSD Test Code: 8260-W	Date Analyzed:	01/31/201	14 1237h										
Chloroform	21.6	μg/L	SW8260C	0.277	2.00	20.00	0	108	50 - 146	22	1.97	25	
Methylene chloride	19.4	μg/L	SW8260C	0.155	2.00	20.00	0	96.9	30 - 192	19.4	0	25	
Surr: 1,2-Dichloroethane-d4	57.4	μg/L	SW8260C			50.00		115	72 - 151				
Surr: 4-Bromofluorobenzene	47.4	μg/L	SW8260C			50.00		94.9	80 - 128				
Surr: Dibromofluoromethane	53.7	μg/L	SW8260C			50.00		107	80 - 124				
Surr: Toluene-d8	48.2	μg/L	SW8260C			50.00		96.4	77 - 129				
Lab Sample ID: 1401538-005AMSD Test Code: 8260-W	Date Analyzed:	02/01/201	14 2025h										
Chloroform	19.9	μg/L	SW8260C	0.277	2.00	20.00	0	99.3	50 - 146	20.7	4.14	25	
Methylene chloride	18.3	μg/L	SW8260C	0.155	2.00	20.00	0	91.5	30 - 192	18.7	2.32	25	
Surr: 1,2-Dichloroethane-d4	58.1	μg/L	SW8260C			50.00		116	72 - 151				
Surr: 4-Bromofluorobenzene	47.1	μg/L	SW8260C			50.00		94.2	80 - 128				
Surr: Dibromofluoromethane	53.7	μg/L	SW8260C			50.00		107	80 - 124				
Surr: Toluene-d8	47.8	μg/L	SW8260C			50.00		95.5	77 - 129				

WORK ORDER Summary

Work Order: 1401525

Page 1 of 3

Client:

Energy Fuels Resources, Inc.

Due Date: 2/11/2014

Client ID:

DEN100

Contact:

Garrin Palmer

Project:

1st Quarter Chloroform 2014

QC Level: Ш WO Type: Project

Comments:

PA Rush. QC 3 (Summary/No chromatograms). RL of 1 ppm for Chloride and VOC and 0.1 ppm for NO2/NO3. Expected levels provided by client - see

Jenn. J-flag what we can't meet. EIM Locus and EDD-Denison. Email Group.;

Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	1
1401525-001A	TW4-09_01292014	1/29/2014 0740h	1/31/2014 0919h	300.0-W I SEL Analytes: CL	Aqueous	~	df-wc	1
1401525-001B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		~	df - no2/no3	
1401525-001C				8260-W	; # of Analytes: 4 / # of Surr: 4	V	VOCFridge	3
1401525-002A	MW-32_01292014	1/29/2014 1305h	1/31/2014 0919h	300.0-W 1 SEL Analytes: CL	Aqueous	V	df-wc	1
1401525-002B	*			NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		V	df - no2/no3	
1401525-002C				8260-W	ı; # of Analytes: 4 / # of Surr: 4	V	VOCFridge	3
1401525-003A	TW4-25_01272014	1/27/2014 1338h	1/31/2014 0919h	300.0-W 1 SEL Analytes: CL	Aqueous	V	df-wc	1
1401525-003B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		V	df - no2/no3	
1401525-003C				8260-W Test Group: 8260-W-Custon	; # of Analytes: 4 / # of Surr: 4	V	VOCFridge	3
1401525-004A	TW4-26_01292014	1/29/2014 0750h	1/31/2014 0919h	300.0-W 1 SEL Analytes: CL	Aqueous	V	df - wc	1
1401525-004B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		V	df - no2/no3	
1401525-004C		-		8260-W Test Group: 8260-W-Custon	ı; # of Analytes: 4 / # of Surr: 4	V	VOCFridge	3
1401525-005A	TW4-06_01292014	1/29/2014 0758h	1/31/2014 0919h	300.0-W 1 SEL Analytes: CL	Aqueous	V	df-wc	1
1401525-005B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		V	df - no2/no3	
1401525-005C				8260-W Test Group: 8260-W-Custon	n; # of Analytes: 4 / # of Surr: 4	V	VOCFridge	3
1401525-006A	TW4-16_01292014	1/29/2014 0805h	1/31/2014 0919h	300.0-W 1 SEL Analytes: CL	Aqueous	V	df - wc	1
Printed: 2/3/2014	FOR LABORATORY USE ONLY [fill out on page 1]:	%M / RT /	CN E TATE	QC HOK	нок нок	_ (COC Emailed 1/51/	14.

WORK ORDER Summary Work Order: 1401525 Page 2 of 3 Due Date: 2/11/2014 Client: Energy Fuels Resources, Inc. **Collected Date** Received Date **Test Code** Matrix Sel Storage Sample ID Client Sample ID ~ 1/29/2014 0805h 1/31/2014 0919h NO2/NO3-W-353.2 Aqueous df - no2/no3 1401525-006B TW4-16 01292014 1 SEL Analytes: NO3NO2N VOCFridge 8260-W 1401525-006C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 TW4-05 01302014 1/30/2014 0718h 1/31/2014 0919h 300.0-W Aqueous df-wc 1401525-007A 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1401525-007B 1 SEL Analytes: NO3NO2N VOCFridge 1401525-007C 8260-W Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 df-wc 1/27/2014 1355h 1/31/2014 0919h 300.0-W 1401525-008A TW4-24_01272014 Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1401525-008B 1 SEL Analytes: NO3NO2N VOCFridge 1401525-008C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 df-wc 1401525-009A TW4-18_01302014 1/30/2014 0733h 1/31/2014 0919h 300.0-W Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df-no2/no3 1401525-009B 1 SEL Analytes: NO3NO2N VOCFridge 1401525-009C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 1/30/2014 0750h df-wc 1401525-010A TW4-33_01302014 1/31/2014 0919h 300.0-W Aqueous I SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1401525-010B 1 SEL Analytes: NO3NO2N VOCFridge 1401525-010C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 df-wc 1/27/2014 1510h 1/31/2014 0919h 300.0-W 1401525-011A TW4-19 01272014 Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1401525-011B 1 SEL Analytes: NO3NO2N 1401525-011C 8260-W **VOCFridge** Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 1/31/2014 0919h 300.0-W df-wc 1401525-012A TW4-04 01272014 1/27/2014 1433h Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1401525-012B 1 SEL Analytes: NO3NO2N Printed: 1/31/2014 FOR LABORATORY USE ONLY [fill out on page 1]: %M RT 🖂 CN TAT QC HOK HOK HOK COC Emailed

WORK ORDER Summary Work Order: 1401525 Page 3 of 3 Client: Energy Fuels Resources, Inc. Due Date: 2/11/2014 Collected Date **Test Code** Sample ID Client Sample ID **Received Date** Matrix Sel Storage 1/27/2014 1433h 1/31/2014 0919h 8260-W **VOCFridge** 1401525-012C TW4-04_01272014 Aqueous 3 Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 1/27/2014 1425h 1/31/2014 0919h 300.0-W df-wc 1401525-013A MW-04_01272014 Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 1401525-013B df-no2/no3 1 SEL Analytes: NO3NO2N VOCFridge 1401525-013C 8260-W Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 1/31/2014 0919h 300.0-W df-wc 1401525-014A MW-26 01272014 1/27/2014 1420h Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1401525-014B 1 SEL Analytes: NO3NO2N 8260-W VOCFridge 1401525-014C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 300.0-W df-wc 1401525-015A TW4-22_01272014 1/27/2014 1403h 1/31/2014 0919h Aqueous I SEL Analytes: CL NO2/NO3-W-353.2 df-no2/no3 1401525-015B 1 SEL Analytes: NO3NO2N 1401525-015C 8260-W VOCFridge Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 1401525-016A TW4-20_01272014 1/27/2014 1412h 1/31/2014 0919h 300.0-W Aqueous df-wc I SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1401525-016B 1 SEL Analytes: NO3NO2N 1401525-016C 8260-W VOCFridge Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 300.0-W 1401525-017A TW4-70_01292014 1/29/2014 1305h 1/31/2014 0919h df-wc Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 1401525-017B df - no2/no3 1 SEL Analytes: NO3NO2N 1401525-017C 8260-W **VOCFridge** Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 1401525-018A 1/27/2014 8260-W VOCFridge Trip Blank 1/31/2014 0919h Aqueous 3 Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4

American West **Analytical Laboratories**

463 W. 3600 S. Salt Lake City, UT 84115

CHAIN OF CUSTODY

All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and reporting

AWAL Lab Sample Set # -

	Phone # (801) 263-8686 Toll	Free # (888) 263-8686	3			1,	Hmits (I	PQL) u	iulesa sb	ecifically i	request	ea otnerw	ise on th	is Chain	or Custody	and/or attached documentation.	Page 1 of 2
	Fax # (801) 263-8687 Ema www.awal-lab	_	n				Level:	:			7	urn Ar Sta	ound T			Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on the day they are due.	Due Date:
	Energy Fuels Resources, Inc.				T					T	T	T	T			W 1 1 1 500	Laboratory Use Only
Client	6425 S. Hwy. 191			П	1	- 1							1			X Include EDD: LOCUS UPLOAD EXCEL	
Address:	Blanding, UT 84511			П	1					- 1			1			Field Filtered For:	Samples Wire Feel -X
Contact:	Garrin Palmer			П													Shipped of thend delivered
	(435) 678-2221 Cell	4.		П												For Compliance With:	2 Amoreta (Chilled 12.7)
Phone #: Email:	gpalmer@energyfuels.com; KWeinel@energy		nergyfuels.com	П		- 1	6			- 1			1			□ NELAP □ RCRA □ CWA	3 Temperature 4779k
	1st Quarter Chloroform 2014			П												□ SDWA	4 Received Broken/Leading I
Project Name:	•			П	۱		6									☐ ELAP / A2LA ☐ NLLAP ☐ Non-Compliance	
Project#:				П	1	(353.2)	300.0)	0								☐ Non-Compliance ☐ Other:	5 Properly Pressurved N Clecked at Nameh
Sampler Name:	Garrin Palmer, Tanner Holliday			iners	atrix		0,	(8260C)									Y Stay San News
Sampler Name:		Date		Conta	ple Ma	NO2/NO3	(4500	Cs (8					1			Known Hazards &	6 Raceivad Willin Andding Timna
	Sample ID:	Sampled	Time Sampled	ф #±	Sample	No	ប	VOCS	\Box		\perp					Sample Comments	
TW4-09_0129201	4	1/29/2014	740	5	w	х	ж	х									
MW-32_0129201		1/29/2014	1305	5	w	x	х	x									COC, Table Witte
TW4-25_0127201	4	1/27/2014	1338	5	w	х	х	x									1 Present on Outet Package Y N NA
TW4-26_0129201	4	1/29/2014	750	5	w	x	х	x									2 Ummker on Other Haskage V N NA
TW4-06_0129201	4	1/29/2014	758	5	w	х	х	x									
TW4-16_0129201	4	1/29/2014	805	5	w	х	х	х									3 Presentor Sample (NA)
TW4-05_0130201	4	1/30/2014	718	5	w	х	x	х									4 Unbroken on Sample
TW4-24_0127201	4	1/27/2014	1355	5	w	х	х	х									Y N (NA)
TW4-18_0130201	4	1/30/2014	733	5	w	х	х	х									Discrepancies Bolyoeo Sample
TW4-33_0130201	4	1/30/2014	750	5	w	х	х	х									Labella and CGC Record?
TW4-19_0127201	4	1/27/2014	1510	5	w	ж	х	х									lacksquare
TW4-04_0127201	4	1/27/2014	1433	5	w	х	х	х									
MW-04_0127201	4	1/27/2014	1425	5	w	х	x	х									
Relinquished by: Signature	aux Palus	1/30/14	Received by: Signature								D:	ate:				Special Instructions:	
Print Name: G	arrin Palmer	Time: 1000	Print Name: 0			.,	/			,	n	me:	,	/			
Reinquished by: Signature		Date:	Received by:	n	C	Za,	,		1			ste: //	311	114	4	See the Analytical Scope of Wo	ork for Reporting Limits and VOC
Print Name:		Timec	Print Name: 5/	100	4	fa.	W-		1			me: .*		9	:19		
Relinquished by: Signature		Ontie	Received by: Signature			1		-7	e -			ate:					
Print Name:		Time:	Print Name:									me:					
Relinquished by: Signature		Date;	Received by: Signature									ate:					
Print Name:		Time:	Print Name:							4	Ti	mec					

American West **Analytical Laboratories**

CHAIN OF CUSTODY

1401525

A	463 W. 3600 S. Salt Lake Phone # (801) 263-8686 Toll			All a	analysis	a will be	ə condu imils (F	ucted ur PQL) ur	sing NELAP accr less specifically	redited met	hods and all otherwise on	data will be r this Chain of	eported usi Custody a	ing AWAL's standard energies lists and reporting and/or attached documentation.	AWAL Lab Sample Set # Page 2 of 2
	Fax # (801) 263-8687 Ema www.awal-lab	ail awal@awaHabs.con	n			QC L	.evel: 3			Tur	n Around Standar			Unless other arrengements have been made, signed reports will be emailed by 5:00 pm on the day they are due.	Due Dates
Client:	Energy Fuels Resources, Inc.			П	П	\neg		П						X Include EDD:	Leboraldty Use Only
Address:	6425 S. Hwy. 191			П		- 1						1 1		LOCUS UPLOAD EXCEL	Salaria Waria C. I. No
Address.	Blanding, UT 84511			П	П	- 1								Fleid Filtered For:	1 max
Contact:	Garrin Palmer			П	П										Control of the Contro
	(435) 678-2221 Cell:	и.			П							1 1		For Compliance With:	44
Phone #:	gpalmer@energyfuels.com; KWeinel@energy	-	nergyfuels.com		П									□ RCRA	3 Yempirakite3
Email:	1st Quarter Chloroform 2014	,		П	П	- 1								□ CWA □ SDWA	A Received Brown anying / Improparty Seesal
Project Name:	131 Ammin omninini 141 i				П		~				1 1			☐ ELAP / A2LA ☐ NLLAP	0
Project #:					П	(353.2)	300.0)				11			☐ Non-Compliance ☐ Other:	Anotherly Propertied
PO#:	G 1 D 1 M W 114			ners	ž	3 (3)	0	(8260C)							Credition at better V
Sampler Name:	Garrin Palmer, Tanner Holliday			ontail	e Matrix	NO.	(4500	\$ (82						Known Hazards	d Received Wideh
	Sample ID:	Date Sampled	Time Sampled	t of C	Sample	NO2/NO3	C C	VOCs						& Sample Comments	
MW-26_01272014		1/27/2014	1420	5	7	х	х	х							
TW4-22_0127201	4	1/27/2014	1403	5	w	х	х	x				77			COS TAVE WAS:
TW4-20_0127201	4	1/27/2014	1412	5	w	х	x	x							Freshill on Oxide Packetts
TW4-70_0129201	4	1/29/2014	1305	5	w	х	х	х							Z pulphrokan on Gutai, Packabe
Trip Blank	2	1/27/2014		3	w	х	х	х							
Temp Blank				5	w	х	х	х							9 Present on Sample
				5	w	х	x	х		_		11	-		4 Charolini of Sando
				5	w	x	x	x		\neg	\top				Y (NA)
				5	w	х	x	х				+	-		
				5	w	х	х	х		\neg	\vdash				Classepaniles Bolivon Sample Lebels ling (GDC Record)
				5	+	х	x	x		_		+	-1-		
				5	+	х	x	x	\vdash	_		+			
				5	+	x	×	х	\vdash	_	-	+		 	
Relinquished by:	0.1	Date: 1	Received by:							Date				Presid leste ations	
Signature 52	unte Palin	1/30/14	Signature	-	_		_	-		Time				Special Instructions:	
Print Name: Ga.	rrin Palmer	1000	Print Name Received by: V	200			1			Date		1/11		See the Analytical Scope of W	ork for Reporting Limits and VOC
Signature		Time:	Signature	Oh.	<u>-</u> .	7	1=1	_	-01	Time	1/5/	119		analyte list.	and the post and t
Print Name:			Print Name: 2/6. Received by:	24	+	M	سالا	_	1	Date		7:19			
Refinquished by: Signeture		Oate:	Signature												
Print Name		Time:	Print Name:							Time					
Relinquished by: Slanature		Date:	Received by: Signature							Date					
		Time:								Time	i.			1	

AWAL - Analytical Scope of Work White Mesa Mill Blanding Utah Page 11 of 13

		un extilluse accumi	IMPERIORS SEEDING		
Contaminant	Analytical	Renoiting	Muximum	Samtegy	Sample
	Methods	Linity	Holding	Prevervation	Temperature:
	to be Used		Times	Requirements	Requirements
Cremeral Information parties					
Chloride	A4500-C1	1 mg/L	28 days	None	≤6°C
	B or				
	A4500-Cl				
	E				1
	or E300.0	_><			
Sulfate	A4500-	1 mg/L	28 days	None	≤6°C
	SO4 E or				
	E300.0				
Carbonate as CO3	A2320 B	1 mg/L	14 days	None	₹&C
Bicarbonate as HCO3	A2320 B	1 mg/L	14 days	None	
Volatile Organic Compound					
Carbon Tetrachloride	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
	or				
	SW8260C				_
Chloroform	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
	or		ı		
	SW8260C	ļ			
Dichloromethane	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
(Methylene Chloride)	or				
	SW8260C	10 5			-0
Chloromethane	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
	or				
Supplies the supplies of the s	SW8260C			1 L 1 C C C C C C C C C C C C C C C C C	MANUAL CONTRACTOR AND AND AND AND AND AND AND AND AND AND
SVOCs - Tailings Impoundi			740 1	以相关的特别的变形	
1,2,4-Trichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,2-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,3-Dichlorobensene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,4-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1-Methylnaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4,5-Trichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4,6-Trichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4-Dichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4-Dimethylphenol	SW8270D	<10.ug/L	1/40 days	None	≤6°C
2,4-Dinitrophenol	SW8270D	<20 ug⁄¥≤	7/40 days	None	≤6°C
2,4-Dinitrotoluene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,6-Dinitrotoluene	CTTOOCOT	<10 ug/L	7/40 days	None	≤6°C
0 011 111	SW8270D				1 200
2-Chloronaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Chlorophenol	SW8270D SW8270D	<10 ug/L <10 ug/L	7/40 days 7/40 days	None None	≤6°C
2-Chlorophenol 2-Methylnaphthalene	SW8270D SW8270D SW8270D	<10 ug/L <10 ug/L <10 ug/L	7/40 days 7/40 days 7/40 days	None None	≤6°C ≤6°C
2-Chlorophenol	SW8270D SW8270D	<10 ug/L <10 ug/L	7/40 days 7/40 days	None	≤6°C ≤6°C ≤6°C
2-Chlorophenol 2-Methylnaphthalene	SW8270D SW8270D SW8270D	<10 ug/L <10 ug/L <10 ug/L <10 ug/L <10 ug/L	7/40 days 7/40 days 7/40 days	None None	≤6°C ≤6°C ≤6°C ≤6°C
2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol	SW8270D SW8270D SW8270D SW8270D	<10 ug/L <10 ug/L <10 ug/L <10 ug/L	7/40 days 7/40 days 7/40 days 7/40 days	None None None	≤6°C ≤6°C ≤6°C ≤6°C ≤6°C
2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitrophenol	SW8270D SW8270D SW8270D SW8270D SW8270D	<10 ug/L <10 ug/L <10 ug/L <10 ug/L <10 ug/L	7/40 days 7/40 days 7/40 days 7/40 days 7/40 days	None None None	≤6°C ≤6°C ≤6°C ≤6°C

Preservation Check Sheet

Sample Set Extension and pH

Analysis	Preservative	1	2	1 3	4		1	13	8	9	10	11	(0	12	111	1	16	17	
		/	12	J	7	5	6	-	0		10	//	12	/3	14	15	70	//	
Ammonia	pH <2 H ₂ SO ₄																		
COD	pH <2 H ₂ SO ₄													,					
Cyanide	pH >12 NaOH																		
Metals	pH <2 HNO ₃																		
NO2 & NO3		Yes	Ves	Yes	1/02	Yes	Yes	Ve5	Ves	Yes	1/05	Ves	V65	Yes	Ves	Ves	Ves	1/c5	
O&G	pH <2 HCL	/	1	/	1	1	1	1	7	7	1		/	1	1	7	1		
Phenols	pH <2 H ₂ SO ₄																		
Sulfide	pH > 9NaOH, Zn Acetate																		
TKN	pH <2 H ₂ SO ₄																		
T PO ₄	pH <2 H ₂ SO ₄																		
-		-	-		1											-			_
					-	-	1	-											
														b			1		

n.	 	J.,	ire:

- 1) Pour a small amount of sample in the sample lid
- 2) Pour sample from Lid gently over wide range pH paper
- 3) Do Not dip the pH paper in the sample bottle or lid
- 4) If sample is not preserved, properly list its extension and receiving pH in the appropriate column above
- 5) Flag COC, notify client if requested
- 6) Place client conversation on COC
- 7) Samples may be adjusted

Frequency:

All samples requiring preservation

- * The sample required additional preservative upon receipt.
- + The sample was received unpreserved
- ▲ The Sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH < 2 due to the sample matrix
- The sample pH was unadjustable to a pH > ____ due to the sample matrix interference

Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191

Blanding, UT 84511 TEL: (435) 678-2221

RE: 1st Quarter Chloroform 2014

Dear Garrin Palmer:

Lab Set ID: 1402140

463 West 3600 South Salt Lake City, UT 84115

American West Analytical Laboratories received 11 sample(s) on 2/10/2014 for the analyses presented in the following report.

Phone: (801) 263-8686 Toll Free: (888) 263-8686

American West Analytical Laboratories (AWAL) is accredited by The National Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is

Fax: (801) 263-8687

state accredited in Colorado, Idaho, New Mexico, and Missouri.

e-mail: awal@awal-labs.com

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha

QA Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Thank You,

Digitally signed by Kyle F. Gross DN: cn=Kyle F. Gross, o=AWAL, ou=AWAL-14b Gross Dy Driector, email=kyle@awal-labs.com, c=US Date: 2014.02.17 13:36:24 -07'00'

Approved by:

Laboratory Director or designee

SAMPLE SUMMARY

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Set ID:

1402140

Date Received: 2/10/2014 1015h

	Lab Sample ID	Client Sample ID	Date Colle	ected	Matrix	Analysis
463 West 3600 South	1402140-001A	TW4-21_02052014	2/5/2014	825h	Aqueous	Anions, E300.0
Salt Lake City, UT 84115	1402140-001B	TW4-21_02052014	2/5/2014	825h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1402140-001C	TW4-21_02052014	2/5/2014	825h	Aqueous	VOA by GC/MS Method 8260C/5030C
Phone: (801) 263-8686	1402140-002A	TW4-29_02052014	2/5/2014	842h	Aqueous	Anions, E300.0
	1402140-002B	TW4-29_02052014	2/5/2014	842h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1402140-002C	TW4-29_02052014	2/5/2014	842h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1402140-003A	TW4-11_02052014	2/5/2014	859h	Aqueous	Anions, E300.0
	1402140-003B	TW4-11_02052014	2/5/2014	859h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1402140-003C	TW4-11_02052014	2/5/2014	859h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1402140-004A	TW4-07_02052014	2/5/2014	910h	Aqueous	Anions, E300.0
Kyle F. Gross	1402140-004B	TW4-07_02052014	2/5/2014	910h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	1402140-004C	TW4-07_02052014	2/5/2014	910h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1402140-005A	TW4-01_02052014	2/5/2014	923h	Aqueous	Anions, E300.0
Jose Rocha	1402140-005B	TW4-01_02052014	2/5/2014	923h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	1402140-005C	TW4-01_02052014	2/5/2014	923h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1402140-006A	TW4-10_02052014	2/5/2014	934h	Aqueous	Anions, E300.0
	1402140-006B	TW4-10_02052014	2/5/2014	934h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1402140-006C	TW4-10_02052014	2/5/2014	934h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1402140-007A	TW4-02_02062014	2/6/2014	818h	Aqueous	Anions, E300.0
	1402140-007B	TW4-02_02062014	2/6/2014	818h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1402140-007C	TW4-02_02062014	2/6/2014	818h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1402140-008A	TW4-29R_02042014	2/4/2014	1111h	Aqueous	Anions, E300.0
	1402140-008B	TW4-29R_02042014	2/4/2014	1111h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1402140-008C	TW4-29R_02042014	2/4/2014	1111h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1402140-009A	TW4-08_02062014 Re Sample	2/6/2014	825h	Aqueous	Anions, E300.0
	1402140-009B	TW4-08_02062014 Re Sample	2/6/2014	825h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1402140-009C	TW4-08_02062014 Re Sample	2/6/2014	825h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1402140-010A	TW4-60_02062014	2/6/2014	845h	Aqueous	Anions, E300.0

Report Date: 2/17/2014 Page 2 of 34

Client:

Energy Fuels Resources, Inc.

Project:

1st Quarter Chloroform 2014

Lab Set ID:

1402140

Date Received: 2/10/2014 1015h

Lab Sample ID	Client Sample ID	Date Colle	ected	Matrix	Analysis
1402140-010B	TW4-60_02062014	2/6/2014	845h	Aqueous	Nitrite/Nitrate (as N), E353.2
1402140-010C	TW4-60_02062014	2/6/2014	845h	Aqueous	VOA by GC/MS Method 8260C/5030C
1402140-011A	Trip Blank	2/4/2014		Aqueous	VOA by GC/MS Method

Contact: Garrin Palmer

8260C/5030C

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Inorganic Case Narrative

Client: Contact: Project:

Lab Set ID:

Energy Fuels Resources, Inc.

Garrin Palmer

1st Quarter Chloroform 2014

1402140

463 West 3600 South Salt Lake City, UT 84115 **Sample Receipt Information:**

Date of Receipt:

2/10/2014

Date(s) of Collection:

2/4, 2/5 & 2/6/2014

Sample Condition: C-O-C Discrepancies: Intact None

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Holding Time and

Holding Time and Preservation Requirements: The analysis and preparation of all samples were performed within the method holding times. All samples were properly

preserved.

e-mail: awal@awal-labs.com

Fax: (801) 263-8687

Preparation and Analysis Requirements: The samples were analyzed following the

methods stated on the analytical reports.

web: www.awal-labs.com

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Kyle F. Gross Laboratory Director

Batch QC Requirements: MB, LCS, MS, MSD, RPD:

Jose Rocha QA Officer **Method Blanks (MB):** No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Samples (LCS): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicates (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Corrective Action: None required.

Volatile Case Narrative

Client: Contact:

Project: Lab Set ID: Energy Fuels Resources, Inc.

Garrin Palmer

1st Quarter Chloroform 2014

1402140

463 West 3600 South Salt Lake City, UT 84115 **Sample Receipt Information:**

Date of Receipt:

Date of Collection:

Sample Condition: C-O-C Discrepancies:

Method:

Analysis:

2/10/2014

2/4, 2/5 & 2/6/2014

Intact

None

SW-846 8260C/5030C

Volatile Organic Compounds

Toll Free: (888) 263-8686 Fax: (801) 263-8687

Phone: (801) 263-8686

3-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

> Jose Rocha OA Officer

Holding Time and Preservation Requirements: All samples were received in appropriate containers and properly preserved. The analysis and preparation of all samples were

General Set Comments: Multiple target analytes were observed above reporting limits.

performed within the method holding times following the methods stated on the analytical

reports.

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Batch QC Requirements: MB, LCS, MS, MSD, RPD, and Surrogates:

Method Blanks (MBs): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Sample (LCSs): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicate (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Surrogates: All surrogate recoveries were within established limits.

Corrective Action: None required.

Client:

Project:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact:

Garrin Palmer

Dept: WC

QC Type: LCS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	LCS-R64819 300.0-W	Date Analyzed:	02/10/20	l4 1701h										
Chloride		4.85	mg/L	E300.0	0.0114	0.100	5.000	0	96.9	90 - 110				
Lab Sample ID: Test Code:	LCS-R64879 300.0-W	Date Analyzed:	02/11/20	14 1421h										
Chloride		4.88	mg/L	E300.0	0.0114	0.100	5.000	0	97.6	90 - 110				
Lab Sample ID: Test Code:	LCS-R65008 NO2/NO3-W-353.2	Date Analyzed:	02/14/20	14 1745h										
Nitrate/Nitrite (a	s N)	0.986	mg/L	E353.2	0.00252	0.100	1.000	0	98.6	90 - 110				

Client:

Project:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Garrin Palmer

Dept: WC

QC Type: MBLK

	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
MB-R64819 300.0-W	Date Analyzed:	02/10/201	4 1638h										
	< 0.100	mg/L	E300.0	0.0114	0.100								
MB-R64879 300.0-W	Date Analyzed:	02/11/201	4 1358h										
	< 0.100	mg/L	E300.0	0.0114	0.100								
MB-R65008 NO2/NO3-W-353.2	Date Analyzed:	02/14/201	4 1744h										
N)	< 0.100	mg/L	E353.2	0.00252	0.100								
	300.0-W MB-R64879 300.0-W MB-R65008 NO2/NO3-W-353.2	MB-R64819 300.0-W < 0.100 MB-R64879 300.0-W < 0.100 MB-R65008 NO2/NO3-W-353.2 Date Analyzed:	MB-R64819 300.0-W < 0.100 mg/L MB-R64879 300.0-W Date Analyzed: 02/11/2013 300.0-W < 0.100 mg/L MB-R65008 Date Analyzed: 02/14/2013 NO2/NO3-W-353.2	MB-R64819 300.0-W O2/10/2014 1638h O2/10/2014 1638h MB-R64879 300.0-W Date Analyzed: 02/11/2014 1358h O2/10/2014 1358h O2/11/2014 1358h O2/11/2014 1744h O2/NO3-W-353.2 	MB-R64819 Date Analyzed: 02/10/2014 1638h 300.0-W column of the column of	Result Units Method MDL Limit MB-R64819 300.0-W Date Analyzed: 02/10/2014 1638h 02/10/2014 1638h WB-R64879 300.0-W Date Analyzed: 02/11/2014 1358h 02/11/2014 1358h WB-R65008 NO2/NO3-W-353.2 Date Analyzed: 02/14/2014 1744h 0.0114	MB-R64819 300.0-W Date Analyzed: 02/10/2014 1638h MB-R64879 300.0-W Date Analyzed: 02/11/2014 1358h MB-R64879 300.0-W Date Analyzed: 02/11/2014 1358h MB-R65008 NO2/NO3-W-353.2 Date Analyzed: 02/14/2014 1744h	MB-R64819 300.0-W Date Analyzed: 02/10/2014 1638h MB-R64879 300.0-W Date Analyzed: 02/11/2014 1358h MB-R64879 300.0-W Date Analyzed: 02/11/2014 1358h MB-R65008 NO2/NO3-W-353.2 Date Analyzed: 02/14/2014 1744h	MB-R64819 300.0-W Date Analyzed: 02/10/2014 1638h MB-R64879 300.0-W Date Analyzed: 02/11/2014 1358h MB-R64879 300.0-W Date Analyzed: 02/11/2014 1358h MB-R65008 NO2/NO3-W-353.2 Date Analyzed: 02/14/2014 1744h	MB-R64819 300.0-W Date Analyzed: 02/10/2014 1638h MB-R64879 300.0-W Date Analyzed: 02/11/2014 1358h MB-R64879 300.0-W Date Analyzed: 02/11/2014 1358h MB-R65008 NO2/NO3-W-353.2 Date Analyzed: 02/14/2014 1744h	MB-R64819 300.0-W Date Analyzed: 02/10/2014 1638h Spiked Amount %REC Limits Amt MB-R64819 300.0-W - <td>MB-R64819 300.0-W Date Analyzed: 02/10/2014 1638h Spiked Amount %REC Limits Amt % RPD MB-R64819 300.0-W Date Analyzed: 02/10/2014 1638h Spiked Amount %REC Limits Amt % RPD MB-R64819 300.0-W Date Analyzed: 02/11/2014 1538h 0.0114 0.100 Spiked Amount %REC Limits Amt % RPD MB-R64819 300.0-W Date Analyzed: 02/11/2014 1558h 0.0114 0.100 Spiked Amount %REC Limits Amt % RPD MB-R64879 300.0-W Date Analyzed: 02/11/2014 1558h 0.0114 0.100 Spiked Amount %REC Limits Amt % RPD MB-R65008 NO2/NO3-W-353.2 Date Analyzed: 02/11/2014 1744h 0.100 Spiked Amount % REC Limits Amt % REC Limits Amt % REC Limits Amt % REC Limits Amt Spiked Amount Spiked Amount Spiked Amount</td> <td>MB-R64819 300.0-W Date Analyzed: 02/10/2014 1638h Spiked Amount %REC Limits Amt % RPD Limits MB-R64819 300.0-W Date Analyzed: 02/10/2014 1638h 5300.0 0.0114 0.100 5000 5000 0.0114 0.100 5000</td>	MB-R64819 300.0-W Date Analyzed: 02/10/2014 1638h Spiked Amount %REC Limits Amt % RPD MB-R64819 300.0-W Date Analyzed: 02/10/2014 1638h Spiked Amount %REC Limits Amt % RPD MB-R64819 300.0-W Date Analyzed: 02/11/2014 1538h 0.0114 0.100 Spiked Amount %REC Limits Amt % RPD MB-R64819 300.0-W Date Analyzed: 02/11/2014 1558h 0.0114 0.100 Spiked Amount %REC Limits Amt % RPD MB-R64879 300.0-W Date Analyzed: 02/11/2014 1558h 0.0114 0.100 Spiked Amount %REC Limits Amt % RPD MB-R65008 NO2/NO3-W-353.2 Date Analyzed: 02/11/2014 1744h 0.100 Spiked Amount % REC Limits Amt % REC Limits Amt % REC Limits Amt % REC Limits Amt Spiked Amount Spiked Amount Spiked Amount	MB-R64819 300.0-W Date Analyzed: 02/10/2014 1638h Spiked Amount %REC Limits Amt % RPD Limits MB-R64819 300.0-W Date Analyzed: 02/10/2014 1638h 5300.0 0.0114 0.100 5000 5000 0.0114 0.100 5000

American West

Lab Set ID: 1402140

Client:

Project:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact:

Garrin Palmer

Dept:

WC

QC Type: MS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1402140-008AMS 300.0-W	Date Analyzed:	02/11/201	4 024h										
Chloride		5.16	mg/L	E300.0	0.0114	0.100	5.000	0	103	90 - 110				
Lab Sample ID: Test Code:	1402075-001GMS 300.0-W	Date Analyzed:	02/11/201	4 1554h										
Chloride		5,140	mg/L	E300.0	11.4	100	5,000	409	94.7	90 - 110				
Lab Sample ID: Test Code:	1402140-004BMS NO2/NO3-W-353.2	Date Analyzed:	02/14/201	4 1822h										
Nitrate/Nitrite (a	s N)	15.1	mg/L	E353.2	0.0252	1.00	10.00	4.24	108	90 - 110				
Lab Sample ID: Test Code:	1402249-002DMS NO2/NO3-W-353.2	Date Analyzed:	02/14/201	4 1824h										
Nitrate/Nitrite (a	s N)	1.02	mg/L	E353,2	0.00252	0.100	1.000	0.0286	99.0	90 - 110				

American West

Lab Set ID: 1402140

Client:

Project:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact:

Garrin Palmer

Dept:

WC

QC Type: MSD

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1402140-008AMSD 300.0-W	Date Analyzed:	02/11/201	4 047h										
Chloride		5.22	mg/L	E300.0	0.0114	0.100	5.000	0	104	90 - 110	5.16	1.12	20	
Lab Sample ID: Test Code:	1402075-001GMSD 300.0-W	Date Analyzed:	02/11/201	4 1618h										
Chloride		5,180	mg/L	E300.0	11,4	100	5,000	409	95.5	90 - 110	5140	0.820	20	
Lab Sample ID: Test Code:	1402140-004BMSD NO2/NO3-W-353.2	Date Analyzed:	02/14/201	4 1823h										
Nitrate/Nitrite (as	N)	14.6	mg/L	E353.2	0.0252	1,00	10.00	4.24	104	90 - 110	15.1	3.17	10	
Lab Sample ID: Test Code:	1402249-002DMSD NO2/NO3-W-353.2	Date Analyzed:	02/14/201	4 1826h										
Nitrate/Nitrite (as	N)	1.05	mg/L	E353.2	0.00252	0.100	1.000	0.0286	103	90 - 110	1.02	3.38	10	

Client:

Project:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Garrin Palmer

Dept: MSVOA

QC Type: LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
	D. L. L.	02/10/20	14 90.61						0.0000				
Lab Sample ID: LCS VOC 021014A	Date Analyzed:	02/10/20	14 806n										
Test Code: 8260-W										_			
Chloroform	23.2	μg/L	SW8260C	0.277	2.00	20.00	0	116	67 - 132				
Methylene chloride	24.2	μg/L	SW8260C	0.155	2.00	20.00	0	121	32 - 185				
Surr: 1,2-Dichloroethane-d4	49.2	μg/L	SW8260C			50.00		98.5	76 - 138				
Surr: 4-Bromofluorobenzene	50.0	μg/L	SW8260C			50.00		99.9	77 - 121				
Surr: Dibromofluoromethane	49.6	μ <mark>g/</mark> L	SW8260C			50.00		99.1	67 - 128				
Surr: Toluene-d8	50.2	μg/L	SW8260C			50.00		100	81 - 135				
Lab Sample ID: LCS VOC 021014B	Date Analyzed:	02/10/20	14 1931h										
Test Code: 8260-W													
Chloroform	23.0	μg/L	SW8260C	0.277	2.00	20.00	0	115	67 - 132				
Surr: 1,2-Dichloroethane-d4	50.9	μg/L	SW8260C			50.00		102	76 - 138				
Surr: 4-Bromofluorobenzene	48.5	μg/L	SW8260C			50.00		97.1	77 - 121				
Surr: Dibromofluoromethane	49.9	μg/L	SW8260C			50.00		99.8	67 - 128				
Surr: Toluene-d8	49.3	μg/L	SW8260C			50.00		98.6	81 - 135				
Lab Sample ID: LCS VOC 021114A	Date Analyzed:	02/11/20	14 71 1h										
Test Code: 8260-W									Ш				
Chloroform	22.0	μg/L	SW8260C	0.277	2.00	20.00	0	110	67 - 132				
Methylene chloride	24.4	μg/L	SW8260C	0.155	2.00	20.00	0	122	32 - 185				
Surr: 1,2-Dichloroethane-d4	50.8	μg/L	SW8260C			50.00		102	76 - 138				
Surr: 4-Bromofluorobenzene	48.6	μg/L	SW8260C			50.00		97.1	77 - 121				
Surr: Dibromofluoromethane	50.4	μg/L	SW8260C			50.00		101	67 - 128				
Surr: Toluene-d8	49.5	μg/L	SW8260C			50.00		98.9	81 - 135				

463 West 3600 South

A

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1402140

Project: 1st Quarte

Client:

1st Quarter Chloroform 2014

Contact: Garrin Palmer

Dept: MSVOA

QC Type: MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC 021014A Test Code: 8260-W	Date Analyzed:	02/10/201	4 848h										
Carbon tetrachloride	< 1.00	μg/L	SW8260C	0.137	1.00								-
Chloroform	< 1.00	μg/L	SW8260C	0.277	1.00								
Chloromethane	< 1.00	μg/L	SW8260C	0.127	1.00								
Methylene chloride	< 1.00	μg/L	SW8260C	0.155	1.00								
Surr: 1,2-Dichloroethane-d4	51.0	μg/L	SW8260C			50.00		102	76 - 138				
Surr: 4-Bromofluorobenzene	52.7	μg/L	SW8260C			50.00		105	77 - 121				
Surr: Dibromofluoromethane	49.5	μg/L	SW8260C			50.00		99.0	67 - 128				
Surr: Toluene-d8	51.1	μg/L	SW8260C			50.00		102	81 - 135				
Lab Sample ID: MB VOC 021014B Test Code: 8260-W	Date Analyzed:	02/10/201	4 2009 h										
Chloroform	< 1.00	μg/L	SW8260C	0.277	1.00								
Surr: 1,2-Dichloroethane-d4	52.2	μg/L	SW8260C			50.00		104	76 - 138				
Surr: 4-Bromofluorobenzene	52.2	μg/L	SW8260C			50.00		104	77 - 121				
Surr: Dibromofluoromethane	48.8	μg/L	SW8260C			50.00		97.6	67 - 128				
Surr: Toluene-d8	49.8	μg/L	SW8260C			50.00		99.6	81 - 135				
Lab Sample ID: MB VOC 021114A Test Code: 8260-W	Date Analyzed:	02/11/201	4 749h										
Carbon tetrachloride	< 1.00	μg/L	SW8260C	0.137	1.00								
Chloroform	< 1.00	μg/L	SW8260C	0.277	1.00								
Chloromethane	< 1.00	μg/L	SW8260C	0.127	1.00								
Methylene chloride	< 1.00	μg/L	SW8260C	0.155	1.00								
Surr: 1,2-Dichloroethane-d4	54.7	μg/L	SW8260C			50.00		109	76 - 138				
Surr: 4-Bromofluorobenzene	54.6	μg/L	SW8260C			50.00		109	77 - 121				
Surr: Dibromofluoromethane	51.8	μg/L	SW8260C			50.00		104	67 - 128				
Surr: Toluene-d8	52.3	μg/L	SW8260C			50.00		105	81 - 135				

American West

Lab Set ID: 1402140

Client:

Project:

Energy Fuels Resources, Inc.

1st Quarter Chloroform 2014

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Garrin Palmer

Dept: MSVOA

QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1402138-001AMS Test Code: 8260-W	Date Analyzed:	02/10/20	14 1102h										
Chloroform	10,900	μg/L	SW8260C	138	1,000	10,000	0	109	50 - 146				
Methylene chloride	11,300	μg/L	SW8260C	77.5	1,000	10,000	0	113	30 - 192				
Surr: 1,2-Dichloroethane-d4	24,500	μg/L	SW8260C			25,000		98.0	72 - 151				
Surr: 4-Bromofluorobenzene	24,100	μg/L	SW8260C			25,000		96.5	80 - 128				
Surr: Dibromofluoromethane	24,700	μg/L	SW8260C			25,000		98.8	80 - 124				
Surr: Toluene-d8	25,000	μg/L	SW8260C			25,000		99.9	77 - 129				
Lab Sample ID: 1402155-006AMS Test Code: 8260-W	Date Analyzed:	02/10/20	14 2241h										
Chloroform	21.2	μg/L	SW8260C	0.277	2.00	20.00	0	106	50 - 146				
Surr: 1,2-Dichloroethane-d4	51.6	μg/L	SW8260C			50.00		103	72 - 151				
Surr: 4-Bromofluorobenzene	49.3	μg/L	SW8260C			50.00		98.6	80 - 128				
Surr: Dibromofluoromethane	50.2	μg/L	SW8260C			50.00		100	80 - 124				
Surr: Toluene-d8	49.5	μg/L	SW8260C			50.00		99.1	77 - 129				
Lab Sample ID: 1402140-006CMS Test Code: 8260-W	Date Analyzed:	02/11/20	14 846h										
Chloroform	3,560	μg/L	SW8260C	27.7	200	2,000	1260	115	50 - 146				
Methylene chloride	2,470	μg/L	SW8260C	15.5	200	2,000	0	123	30 - 192				
Surr: 1,2-Dichloroethane-d4	5,230	μg/L	SW8260C			5,000		105	72 - 151				
Surr: 4-Bromofluorobenzene	4,760	μg/L	SW8260C			5,000		95.1	80 - 128				
Surr: Dibromofluoromethane	5,140	μg/L	SW8260C			5,000		103	80 - 124				
Surr: Toluene-d8	5,000	μg/L	SW8260C			5,000		100	77 - 129				

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1402140

Project:

Client:

1st Quarter Chloroform 2014

Garrin Palmer Contact:

MSVOA Dept:

QC Type: MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1402138-001AMSD	Date Analyzed:	02/10/20	14 1121h										
Test Code: 8260-W													
Chloroform	10,500	μg/L	SW8260C	138	1,000	10,000	0	105	50 - 146	10900	3.08	25	
Methylene chloride	10,400	μg/L	SW8260C	77.5	1,000	10,000	0	104	30 - 192	11300	7.75	25	
Surr: 1,2-Dichloroethane-d4	24,400	μg/L	SW8260C			25,000		97.5	72 - 151				
Surr: 4-Bromofluorobenzene	24,100	μg/L	SW8260C			25,000		96.6	80 - 128				
Surr: Dibromofluoromethane	24,600	μg/L	SW8260C			25,000		98.2	80 - 124				
Surr: Toluene-d8	25,000	μg/L	SW8260C			25,000		100	77 - 129				
Lab Sample ID: 1402155-006AMSD	Date Analyzed:	02/10/20	14 2300h										
Test Code: 8260-W													
Chloroform	22.4	μg/L	SW8260C	0.277	2.00	20.00	0	112	50 - 146	21.2	5.46	25	
Surr: 1,2-Dichloroethane-d4	50.6	μg/L	SW8260C			50.00		101	72 - 151				
Surr: 4-Bromofluorobenzene	48.1	μg/L	SW8260C			50.00		96.2	80 - 128				
Surr: Dibromofluoromethane	49.3	μg/L	SW8260C			50.00		98.5	80 - 124				
Surr: Toluene-d8	48.6	μg/L	SW8260C			50.00		97.2	77 - 129				
Lab Sample ID: 1402140-006CMSD	Date Analyzed:	02/11/20	14 905h										
Test Code: 8260-W													
Chloroform	3,420	μg/L	SW8260C	27.7	200	2,000	1260	108	50 - 146	3560	3.96	25	
Methylene chloride	2,360	μg/L	SW8260C	15.5	200	2,000	0	118	30 - 192	2470	4.18	25	
Surr: 1,2-Dichloroethane-d4	5,140	μg/L	SW8260C			5,000		103	72 - 151				
Surr: 4-Bromofluorobenzene	4,820	μg/L	SW8260C			5,000		96.4	80 - 128				
			******			5,000		101	80 - 124				
Surr: Dibromofluoromethane	5,030	μg/L	SW8260C			3,000		101	00 - 124				

American West Analytical Laboratories

WORK ORDER Summary

Work Order: 1402140

Page 1 of 2

Client:

Energy Fuels Resources, Inc.

Contact:

Due Date: 2/19/2014

Client ID:

DEN100

Garrin Palmer

Project:

1st Quarter Chloroform 2014

Ш QC Level:

WO Type: Project

Comments:

PA Rush. QC 3 (Summary/No chromatograms). RL of 1 ppm for Chloride and VOC and 0.1 ppm for NO2/NO3. Expected levels provided by client - see

Jenn. J-flag what we can't meet. EIM Locus and EDD-Denison. Email Group.;

Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	,
1402140-001A	TW4-21_02052014	2/5/2014 0825h	2/10/2014 1015h	300.0-W	Aqueous	V	df - wc	1
1402140-001B				1 SEL Analytes: CL NO2/NO3-W-353.2		~	df - no2/no3	
1402140-001 5				I SEL Analytes: NO3NO2N	7		ut - 1102/1103	
1402140-001C				8260-W		V	VOCFridge	
				Test Group: 8260-W-Custon	m; # of Analytes: 4 / # oj	f Surr: 4		
1402140-002A	TW4-29_02052014	2/5/2014 0842h	2/10/2014 1015h	300.0-W	Aqueous	V	df - we	
				1 SEL Analytes: CL				
1402140-002B				NO2/NO3-W-353.2		✓	df - no2/no3	
				1 SEL Analytes: NO3NO2N				
1402140-002C				8260-W		\mathbf{Z}	VOCFridge	
				Test Group: 8260-W-Custon	m; # of Analytes: 4 / # o	f Surr: 4		
1402140-003A	TW4-11_02052014	2/5/2014 0859h	2/10/2014 1015h	300.0-W	Aqueous	✓	df - wc	
				1 SEL Analytes: CL				
1402140-003B				NO2/NO3-W-353.2		~	df - no2/no3	
				1 SEL Analytes: NO3NO2N	I .			
1402140-003C				8260-W		~	VOCFridge	
				Test Group: 8260-W-Custo	m; # of Analytes: 4 / # o	f Surr: 4		
1402140-004A	TW4-07_02052014	2/5/2014 0910h	2/10/2014 1015h	300.0-W	Aqueous	~	df-wc	
				1 SEL Analytes: CL				
1402140-004B				NO2/NO3-W-353.2		~	df - no2/no3	
				1 SEL Analytes: NO3NO2N	<u></u>			
1402140-004C				8260-W		V	VOCFridge	
				Test Group: 8260-W-Custo	m;	f Surr: 4		
1402140-005A	TW4-01_02052014	2/5/2014 0923h	2/10/2014 1015h	300.0-W	Aqueous	✓	df-wc	
				1 SEL Analytes: CL				
1402140-005B				NO2/NO3-W-353.2		V	df - no2/no3	
				1 SEL Analytes: NO3NO2N	<u></u>			
1402140-005C				8260-W		V	VOCFridge	
				Test Group: 8260-W-Custo	m; # of Analytes: 4 / # o	f Surr: 4		
1402140-006A	TW4-10_02052014	2/5/2014 0934h	2/10/2014 1015h	300.0-W	Aqueous	~	df-wc	
				1 SEL Analytes: CL				

WORK ORDER Summary Work Order: 1402140 Page 2 of 2 Energy Fuels Resources, Inc. Due Date: 2/19/2014 Client: **Collected Date Received Date Test Code** Sample ID Client Sample ID Matrix Sel Storage ~ NO2/NO3-W-353.2 1402140-006B TW4-10_02052014 2/5/2014 0934h 2/10/2014 1015h Aqueous df - no2/no3 1 SEL Analytes: NO3NO2N V 1402140-006C 8260-W **VOCFridge** Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 300.0-W V TW4-02_02062014 2/6/2014 0818h 2/10/2014 1015h df-wc 1402140-007A Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 V df - no2/no3 1402140-007B 1 SEL Analytes: NO3NO2N **V** 8260-W **VOCFridge** 1402140-007C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 ~ 300.0-W 1402140-008A TW4-29R 02042014 2/4/2014 1111h 2/10/2014 1015h Aqueous df-wc 1 SEL Analytes: CL NO2/NO3-W-353.2 df-no2/no3 1402140-008B 1 SEL Analytes: NO3NO2N 8260-W ~ VOCFridge 1402140-008C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 V TW4-08 02062014 Re Sample 2/6/2014 0825h 2/10/2014 1015h 300.0-W df-wc 1402140-009A Aqueous 1 SEL Analytes: CL V NO2/NO3-W-353.2 df - no2/no3 1402140-009B 1 SEL Analytes: NO3NO2N V 8260-W **VOCFridge** 1402140-009C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 V 1402140-010A TW4-60_02062014 2/6/2014 0845h 2/10/2014 1015h 300.0-W df-wc Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1402140-010B 1 SEL Analytes: NO3NO2N V 8260-W VOCFridge 1402140-010C Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4 1402140-011A Trip Blank 2/4/2014 2/10/2014 1015h 8260-W Aqueous VOCFridge Test Group: 8260-W-Custom; # of Analytes: 4 / # of Surr: 4

American West Analytical Laboratories

CHAIN OF CUSTODY

1402140

	463 W. 3600 S. Salt Lake Cit Phone # (801) 263-8686 Toll Free			All	алаіуяіз											g AWAL's stendard analyte lists and reporting l/or attached documentation	AWAL Lab Sample Set # Page 1 of 1
	Fax # (801) 263-8687 Email a				G	(C L €	evel:		1			Aroui Stand	nd Tim ard	e:		Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on the day they are due.	Due Date:
Client:	Energy Fuels Resources, Inc.			П	Т	T						T				X Include EDD:	Laboratory Use Only
Address:	6425 S. Hwy. 191			11			- 1					-	- }		П	LOCUS UPLOAD EXCEL	Samples Wares FCC-X
	Blanding, UT 84511			11								- 1				Field Filtered For:	1. Shipping Spanid traditionarya
Contact:	Garrin Palmer										1 1						Z Ambient of Chillest
Phone #:	(435) 678-2221 Cell #:					1	- 1		1							For Compliance With: NELAP	3 Temperatura 2.9 0
Email:	gpalmer@energyfuels.com; KWeinel@energyfuels.com	iels.com;		П												□ RCRA □ CWA	4 Boseved Broken Leaking
Project Name:	1st Quarter Chloroform 2014			П	1								1			□ SDWA □ ELAP/A2LA	(Impropedy Student)
Project #:				П	5	19:0	300.0)		1					ł		□ NLLAP □ Non-Compliance	5 Plebby Piwserviki
PO #.	<u> </u>			ا <u>ي</u>	×	- 1	or 30	(20c)								Other:	Condition at particit
Sampler Name:	Garrin Palmer, Tanner Holliday			ntaine	Matrix	2	(4500	(8260C)								Known Hazards	8 Roseivisi Willian
	Sample ID:	Date Sampled	Time Sampled	# of Cor	Sample	NOZ/NOS	CI (4	Vocs								& Sample Comments	Pysiallyd Tinneer R
74-21_0205201	14	2/5/2014	825	5	w :	x	x	х									
74-29_0205201	14	2/5/2014	842	5	w :	x	х	х									COS Tape Wasi
74-11_0205201	14	2/5/2014	859	5	w :	x	х	х									Present on Outer Parkets
74-07_0205201	14	2/5/2014	910	5	w :	x	х	х									2 September Guller Palduage
74-01_0205201	14	2/5/2014	923	5	w :	x	х	х									2 Speaken on Outle Parluspe N (UA)
74-10_020520 1	14	2/5/2014	934	5	w :	x	х	х									3 Present on Sample NA
74-02_0206201	14	2/6/2014	818	5	W :	x	x	x									4 Urdroken on Sample
74-29R_02042	014	2/4/2014	1111	5	ww :	x	x	х									Y (NA)
74-08_020620	14 Re Sample	2/6/2014	825	5	w :	x	х	х									Obic/Opureses Between Sample
V4-60_020620	14	2/6/2014	845	5	w	x	х	х									Labels and COC Record?
ip Blank		2/4/2014		3				х									
mp Blank								Ш									
inquilation by: Ga	in Palm	Date: 2/6/14	Received by: Signature		/						Date:					Special Instructions:	
	rin Palmer	Time: 1000		/	_						Time:						
nguiahed by; nature		Date:	Received by Signature								Date:					analyte list.	ork for Reporting Limits and VOC
nt Namec		Time:	Print Name:								Time:					- N	
nquished by: nature		Date:	Received by: Signature								Date:						
d Name:	/	rime:	Print Name:					_			Time:			_			
inquished by: nature		Date:	Received by: Signature	THE RESERVE	Ne	_	- 1		_7	1	Date:	40		4			
st Namec		Time:	Print Name: <	21	ma	. :	Hi	tou.			Timo:	10	0	*			

AWAL - Analytical Scope of Work White Mesa Mill Blanding Utah Page 11 of 13

			III Turbacatermen	TWILL INCHES	
(almantimum) in the		A Shalled a	L DUK KET THE	THE SPIRAL PROPERTY.	North desired
	A RESIDENCE OF THE PARTY OF THE			Unit inservice to 2	
	in interior		E PROPERTY OF STREET	l Basemi strains	
A SECULIAR DESCRIPTION OF THE PERSON OF THE					
Chloride	A4500-C1	1 mg/L	28 days	None	≤6°C
	B or	1			
9	A4500-CI				
	E		1		
	or E300.0	\sim	-	<u> </u>	
Sulfate	A4500-	1 mg/L	28 days	None	≤6°C
	SO# E or				
01	E300.0	1 7	14.4	N	100
Carbonate as CO3	A2320 B	1 mg/L	14 days	None	₹6°C
Bicarbonate as HCO3	A2320 B	1 mg/L	14 days	None	sold Selection land assets
Carbon Tetrachloride	SW8260B	1000	14 days	UCI to TIC	≤6°C
Carbon retracmonde		1.0 μg/L	14 days	HCl to pH<2	20€
	or SW8260C				
Chloroform	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
	or	1.0 4511	1 i days	IIO to pii Z	
	SW8260C				
Dichloromethane	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
(Methylene Chloride)	or			Pag 2	
` ,	SW8260C				
Chloromethane	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
-	or				
	SW8260C				
Note that the state of the stat		Colymen 5	LA PROPERTY AND A STATE OF THE		
1,2,4-Trichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,2-Dichlorsbenzene	SW8270D	<10 ug/L	7/40 days	None	
1,3-Dichlorobensene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,4-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1-Methylnaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4,5-Trichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4,6-Trichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4-Dichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4-Dimethylphenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4-Dinitrophenol	SW8270D	<20 ug/K	7/40 days	None	≤6°C
2,4-Dinitrotoluene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,6-Dinitrotoluene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Chloronaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Chlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Methylnaphthalene	SW8270D	<10 ug/L	7/40 days	Меде	≤6°C
2-Methylphenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Nitrophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
3&4-Methylphenol	SW8270D	<10 ug/L	7/40 days	None	€6°C
3,3 -Dichlorobenzidine	SW8270D	<10 ug/L	7/40 days	None	≤68
4.6-Dinitro-2-methylphenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C

Preservation Check Sheet

Sample Set Extension and pH

							ampie	et Exte	ision a	THE PAR		 		 	 	
Analysis	Preservative	/	2	3	4	5	6	7	8	9	10					
Ammonia	pH <2 H ₂ SO ₄															
COD	pH <2 H ₂ SO ₄															
Cyanide	pH >12 NaOH															
Metals	pH <2 HNO ₃															
NO ₂ & NO ₃	pH <2 H ₂ SO ₄	yes	Ves	Yes	Ves	Yes	Yes	105	Yes	yes	yes		71			
O&G	pH <2 HCL	/	1	/	7	/	/	/	,	1	1					
Phenols	pH <2 H ₂ SO ₄															
Sulfide	pH > 9NaOH, Zn Acetate															
TKN	pH <2 H ₂ SO ₄															
T PO ₄	pH <2 H ₂ SO ₄															
				-						+	-					

Procedure:

- 1) Pour a small amount of sample in the sample lid
- 2) Pour sample from Lid gently over wide range pH paper
- 3) Do Not dip the pH paper in the sample bottle or lid
- 4) If sample is not preserved, properly list its extension and receiving pH in the appropriate column above
- 5) Flag COC, notify client if requested
- 6) Place client conversation on COC
- 7) Samples may be adjusted

Frequency:

All samples requiring preservation

- * The sample required additional preservative upon receipt.
- + The sample was received unpreserved
- ▲ The Sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH < 2 due to the sample matrix
- The sample pH was unadjustable to a pH > ____ due to the sample matrix interference

Tab I

Quality Assurance and Data Validation Tables

I-1: Field QA/QC Evaluation

Location	1x Casing Volume	Volume Pumped	2x Casing Volume	Volume Check	Condu	etivity	RPD	р	Н	RPD	Te	тр	RPD	Redox P	otential	RPD	Turl	oidity	RPD
MW-4	NA	Continuously pumped well		4	19	55	N/A	6.	.87	N/A	14	.31	N/A	19	94	N/A	0	.0	N/A
TW4-01	29.45	66.00	59	OK	2149	2144	0.23	6.21	6.23	0.32	14.52	14.54	0.14	267	266	0.38	79	77	2.56
TW4-02	35.26	66.00	71	Pumped Dry	3224	3233	0.28	6.55	6.54	0.15	12.48	12.53	0.40	N.	M	NC	N	M	NC
TW4-03	57.51	90.00	115	Pumped Dry	1572	1569	0.19	5.82	5.86	0.68	15.35	15.31	0.26	N.	M	NC	N	M	NC
		Continuously																	
TW4-04	NA	pumped well		æ		76	N/A		.79	N/A		.86	N/A)8	N/A		.5	N/A
TW4-05	38.65	99.00	77	OK	1514	1513	0.07	6.49	6.49	0.00	15.17	15.19	0.13	263	263	0.00	406	409	0.74
TW4-06	18.38	27.50	37	Pumped Dry	2064	2071	0.34	5.74	5.78	0.69	12.95	12.88	0.54	N.		NC	N		NC
TW4-07	35.45	69.50	71	Pumped Dry	1670	1649	1.27	6.70	6.68	0.30	12.22	12.16	0.49	N	M	NC		M	NC
TW4-08	39.08	99.00	78	OK	3314	3316	0.06	7.10	7.11	0.14	14.79	14.81	0.14	101	100	1.00	199	201	1.00
TW4-08 Resample	38.95	88.00	78	OK	3400	3398	0.06	6.96	6.97	0.14	14.53	14.51	0.14	131	129	1.54	238	244	2.49
TW4-09	40.12	99.00	80	OK	2380	2385	0.21	6.42	6.42	0.00	14.92	14.92	0.00	271	268	1.11	230	239	3.84
TW4-10	34.34	55.00	69	Pumped Dry	2398	2408	0.42	6.15	6.12	0.49	12.07	12.00	0.58	N.	M	NC	N	M	NC
TW4-11	27.23	66.00	54	OK	1645	1649	0.24	6.5	6.51	0.15	14.23	14.25	0.14	264	263	0.38	10.1	10.5	0.00
TW4-12	38.33	88.00	77	OK	1203	1200	0.25	7.06	7.07	0.14	14.79	14.80	0.07	212	212	0.00	5.9	5.9	0.00
TW4-13	34.95	55.00	70	Pumped Dry	1756	1770	0.79	6.77	6.76	0.15	12.35	12.15	1.63	N	M	NC	N	M	NC
TW4-14	5.42	2.75	11	Pumped Dry	4575	4600	0.54	6.74	6.74	0.00	12.40	12.17	1.87	N	M	NC	N	M	NC
A THE RESERVE		Continuously																	
MW-26	NA	pumped well		# 10	35	33	N/A	6.	.55	N/A	14	.36	N/A	21	19	N/A	0.	00	N/A
TW4-16	51.75	121.00	104	OK	3648	3642	0.16	6.55	6.55	0.00	14.76	14.76	0.00	201	203	0.99	59	58	1.71
MW-32	37.88	78.12	76	OK	3881	3857	0.62	6.39	6.38	0.16	14.11	14.18	0.49	195	194	0.51	19	20	5.13
TW4-18	49.56	121.00	99	OK	1580	1576	0.25	6.38	6.39	0.16	15.27	15.29	0.13	265	265	0.00	578	570	1.39
		Continuously																- 1	
TW4-19	NA	pumped well			27	83	N/A	6.	.67	N/A	14	.92	N/A	20)8	N/A	0	.4	N/A
		Continuously					- 11												
TW4-20	NA	pumped well		22	40	65	N/A	6.	.46	N/A	15	.24	N/A	23	33	N/A	14	1.2	N/A
TW4-21	38.84	99.00	78	OK	3911	3913	0.05	6.60	6.60	0.00	15.72	15.74	0.13	270	267	1.12	11	10.8	0.00
		Continuously		TAIL TO STORY					THE					1					
TW4-22	NA	pumped well			58	47	N/A	6	.60	N/A	14	.33	N/A	24	14	N/A		0	N/A
TW4-23	32.09	88.00	64	OK	3666	3662	0.11	6.34	6.32	0.32	14.24	14.25	0.07	177	181	2.23	140	135	3.64
		Continuously								PV III									
TW4-24	NA	pumped well		44	58	90	N/A	6.	.37	N/A	14	.59	N/A	23	33	N/A		0	N/A
		Continuously																	
TW4-25	NA	pumped well		_	29	00	N/A	6	.71	N/A	15	.74	N/A	25	57	N/A	1.	90	N/A
TW4-26	14.85	19.25	30	Pumped Dry	3681	3687	0.16	4.42	4.39	0.68	13.91	13.81	0.72	N.		NC		M	NC
TW4-27	9.86	11.00	20	Pumped Dry	5074	5104	0.59	6.66	6.56	1.51	12.70	12.47	1.83	N		NC		M	NC
TW4-28	45.48	99.00	91	OK	1142	1140	0.18	7.12	7.11	0.14	14.73	14.69	0.27	233	231	0.86	60	61	1.65
TW4-29	14.20	19.00	28	Pumped Dry	4116	4124	0.19	6.41	6.42	0.14	12.02	11.94	0.67	N		NC NC	N		NC
TW4-30	10.01	14.50	20	Pumped Dry	4470	4317	3.48	5.36	5.26	1.88	11.66	11.34	2.78	N		NC		M	NC
TW4-31	15.11	18.00	30	Pumped Dry	4931	4974	0.87	5.93	6.08	2.50	12.47	12.19	2.27	N		NC		M	NC
TW4-32	43.22	88.00	86	OK OK	7162	7206	0.61	3.48	3.47	0.29	14.69	14.69	0.00	462	465	0.65	24	24	0.00
TW4-33	11.36	14.50	23	Pumped Dry	4657	4674	0.36	6.76	6.77	0.15	12.18	12.10	0.66	402 N		NC	N		NC NC
TW4-34	18.06	27.50	36	Pumped Dry	3928	3985	1.44	6.48	6.46	0.13	12.11	12.10	0.66	N		NC		M	NC
				14 25 are continuelly						0.31	12.11	12.03	0.00	IN.	TAT.	INC	IN	171	410

MW-4, TW4-4, MW-26, TW4-19, TW4-20, TW4-24, and TW4-25 are continually pumped wells. TW4-22, TW4-24, and TW4-25 are pumped under the nitrate program.

TW4-02, TW4-03, TW4-06, TW4-07, TW4-10, TW4-13, TW4-14, TW4-26, TW4-27, TW4-29, TW4-30, TW4-31, TW4-33, and TW4-34 were pumped dry and sampled after recovery.

NM = Not Measured. The QAP does not require the measurement of redox potential or turbidity in wells that were purged to dryness.

RPD = Relative Percent Difference

The QAP states that turbidity should be less than 5 Nephelometric Turbidity Units ("NTU") prior to sampling unless the well is characterized by water that has a higher turbidity. The QAP does not require that turbidity measurements be less than 5 NTU prior to sampling. As such, the noted observations regarding turbidity measurements less than 5 NTU are included for information purposes only.

I-2: Holding Time Evaluation

				Hold Time	Allowed Hold	Hold Time
Location ID	Parameter Name	Sample Date	Analysis Date	(Days)	Time (Days)	Check
Trip Blank	Carbon tetrachloride	1/21/2014	1/24/2014	3	14	OK
Trip Blank	Chloroform	1/21/2014	1/24/2014	3	14	OK
Trip Blank	Chloromethane	1/21/2014	1/24/2014	3	14	OK
Trip Blank	Methylene chloride	1/21/2014	1/24/2014	3	14	OK
Trip Blank	Carbon tetrachloride	1/27/2014	1/31/2014	4	14	OK
Trip Blank	Chloroform	1/27/2014	1/31/2014	4	14	OK
Trip Blank	Chloromethane	1/27/2014	1/31/2014	4	14	OK
Trip Blank	Methylene chloride	1/27/2014	1/31/2014	4	14	OK
Trip Blank	Carbon tetrachloride	2/4/2014	2/10/2014	6	14	OK
Trip Blank	Chloroform	2/4/2014	2/10/2014	6	14	OK
Trip Blank	Chloromethane	2/4/2014	2/10/2014	6	14	OK
Trip Blank	Methylene chloride	2/4/2014	2/10/2014	6	14	OK
MW-04	Carbon tetrachloride	1/27/2014	1/31/2014	4	14	OK
MW-04	Chloride	1/27/2014	2/4/2014	8	28	OK
MW-04	Chloroform	1/27/2014	2/1/2014	5	14	OK
MW-04	Chloromethane	1/27/2014	1/31/2014	4	14	OK
MW-04	Methylene chloride	1/27/2014	1/31/2014	4	14	OK
MW-04	Nitrate/Nitrite (as N)	1/27/2014	1/31/2014	4	28	OK
TW4-01	Carbon tetrachloride	2/5/2014	2/10/2014	5	14	OK
TW4-01	Chloride	2/5/2014	2/10/2014	5	28	OK
TW4-01	Chloroform	2/5/2014	2/11/2014	6	14	OK
TW4-01	Chloromethane	2/5/2014	2/10/2014	5	14	OK
TW4-01	Methylene chloride	2/5/2014	2/10/2014	5	14	OK
TW4-01	Nitrate/Nitrite (as N)	2/5/2014	2/14/2014	9	28	OK
TW4-02	Carbon tetrachloride	2/6/2014	2/10/2014	4	14	OK
TW4-02	Chloride	2/6/2014	2/10/2014	4	28	OK
TW4-02	Chloroform	2/6/2014	2/11/2014	5	14	OK
TW4-02	Chloromethane	2/6/2014	2/10/2014	4	14	OK
TW4-02	Methylene chloride	2/6/2014	2/10/2014	4	14	OK
TW4-02	Nitrate/Nitrite (as N)	2/6/2014	2/14/2014	8	28	OK
TW4-02	Carbon tetrachloride	1/22/2014	1/24/2014	2	14	OK
TW4-03	Chloride	1/22/2014	1/30/2014	8	28	OK
TW4-03	Chloroform	1/22/2014	1/24/2014	2	14	
TW4-03				2		OK
	Chloromethane	1/22/2014	1/24/2014	2	14	OK
TW4-03	Methylene chloride	1/22/2014	1/24/2014		14	OK
TW4-03	Nitrate/Nitrite (as N)	1/22/2014	1/29/2014	7	28	OK
TW4-03R	Carbon tetrachloride	1/21/2014	1/24/2014	3	14	OK
TW4-03R	Chloride	1/21/2014	1/30/2014	9	28	OK
TW4-03R	Chloroform	1/21/2014	1/24/2014	3	14	OK
TW4-03R	Chloromethane	1/21/2014	1/24/2014	3	14	OK
TW4-03R	Methylene chloride	1/21/2014	1/24/2014	3	14	OK
TW4-03R	Nitrate/Nitrite (as N)	1/21/2014	1/29/2014	8	28	OK
TW4-04	Carbon tetrachloride	1/27/2014	1/31/2014	4	14	OK
TW4-04	Chloride	1/27/2014	2/4/2014	8	28	OK
TW4-04	Chloroform	1/27/2014	2/1/2014	5	14	OK
TW4-04	Chloromethane	1/27/2014	1/31/2014	4	14	OK
TW4-04	Methylene chloride	1/27/2014	1/31/2014	4	14	OK
TW4-04	Nitrate/Nitrite (as N)	1/27/2014	1/31/2014	4	28	OK
TW4-05	Carbon tetrachloride	1/30/2014	1/31/2014	1	14	OK
TW4-05	Chloride	1/30/2014	2/4/2014	5	28	OK
TW4-05	Chloroform	1/30/2014	1/31/2014	11	14	OK
TW4-05	Chloromethane	1/30/2014	1/31/2014	1	14	OK
TW4-05	Methylene chloride	1/30/2014	1/31/2014	1	14	OK
TW4-05	Nitrate/Nitrite (as N)	1/30/2014	1/31/2014	1	28	OK

I-2: Holding Time Evaluation

		FL . C. C.	3 m 2 1 "	Hold Time	Allowed Hold	Hold Time
Location ID	Parameter Name	Sample Date	Analysis Date	(Days)	Time (Days)	Check
TW4-06	Carbon tetrachloride	1/29/2014	1/31/2014	2	14	OK
TW4-06	Chloride	1/29/2014	2/4/2014	6	28	OK
TW4-06	Chloroform	1/29/2014	1/31/2014	2	14	OK
TW4-06	Chloromethane	1/29/2014	1/31/2014	2	14	OK
TW4-06	Methylene chloride	1/29/2014	1/31/2014	2	14	OK
TW4-06	Nitrate/Nitrite (as N)	1/29/2014	1/31/2014	2	28	OK
TW4-07	Carbon tetrachloride	2/5/2014	2/10/2014	5	14	OK
TW4-07	Chloride	2/5/2014	2/10/2014	5	28	OK
TW4-07	Chloroform	2/5/2014	2/11/2014	6	14	OK
TW4-07	Chloromethane	2/5/2014	2/10/2014	5	14	OK
TW4-07	Methylene chloride	2/5/2014	2/10/2014	5	14	OK
TW4-07	Nitrate/Nitrite (as N)	2/5/2014	2/14/2014	9	28	OK
TW4-08	Carbon tetrachloride	1/23/2014	1/24/2014	1	14	OK
TW4-08	Chloride	1/23/2014	1/31/2014	8	28	OK
TW4-08	Chloroform	1/23/2014	1/24/2014	1	14	OK
TW4-08	Chloromethane	1/23/2014	1/24/2014	1	14	OK
TW4-08	Methylene chloride	1/23/2014	1/24/2014	1	14	OK
TW4-08	Nitrate/Nitrite (as N)	1/23/2014	1/29/2014	6	28	OK
TW4-08	Carbon tetrachloride	2/6/2014	2/10/2014	4	14	OK
TW4-08	Chloride	2/6/2014	2/11/2014	5	28	OK
TW4-08	Chloroform	2/6/2014	2/10/2014	4	14	OK
TW4-08	Chloromethane	2/6/2014	2/10/2014	4	14	OK
TW4-08	Methylene chloride	2/6/2014	2/10/2014	4	14	OK
TW4-08	Nitrate/Nitrite (as N)	2/6/2014	2/14/2014	8	28	OK
TW4-09	Carbon tetrachloride	1/29/2014	1/31/2014	2	14	OK
TW4-09	Chloride	1/29/2014	2/3/2014	5	28	OK
TW4-09	Chloroform	1/29/2014	1/31/2014	2	14	OK
TW4-09	Chloromethane	1/29/2014	1/31/2014	2	14	OK
TW4-09	Methylene chloride	1/29/2014	1/31/2014	2	14	OK
TW4-09	Nitrate/Nitrite (as N)	1/29/2014	1/31/2014	2	28	OK
TW4-10	Carbon tetrachloride	2/5/2014	2/10/2014	5	14	OK
TW4-10	Chloride	2/5/2014	2/10/2014	5	28	OK
TW4-10	Chloroform	2/5/2014	2/11/2014	6	14	OK
TW4-10	Chloromethane	2/5/2014	2/10/2014	5	14	OK
TW4-10	Methylene chloride	2/5/2014	2/10/2014	5	14	OK
TW4-10	Nitrate/Nitrite (as N)	2/5/2014	2/14/2014	9	28	OK
TW4-11	Carbon tetrachloride	2/5/2014	2/10/2014	5	14	OK
TW4-11	Chloride	2/5/2014	2/10/2014	5	28	OK
TW4-11	Chloroform	2/5/2014	2/11/2014	6	14	OK
TW4-11	Chloromethane	2/5/2014	2/10/2014	5	14	OK
TW4-11	Methylene chloride	2/5/2014	2/10/2014	5	14	OK
TW4-11	Nitrate/Nitrite (as N)	2/5/2014	2/14/2014	9	28	OK
TW4-12	Carbon tetrachloride	1/22/2014	1/24/2014	2	14	OK
TW4-12	Chloride	1/22/2014	1/30/2014	8	28	OK
TW4-12	Chloroform	1/22/2014	1/24/2014	2	14	OK
TW4-12	Chloromethane	1/22/2014	1/24/2014	2	14	OK
TW4-12	Methylene chloride	1/22/2014	1/24/2014	2	14	OK
TW4-12	Nitrate/Nitrite (as N)	1/22/2014	1/29/2014	7	28	OK
TW4-13	Carbon tetrachloride	1/22/2014	1/24/2014	2	14	OK
TW4-13	Chloride	1/22/2014	1/30/2014	8	28	OK
TW4-13	Chloroform	1/22/2014	1/24/2014	2	14	OK
TW4-13	Chloromethane	1/22/2014	1/24/2014	2	14	OK
TW4-13	Methylene chloride	1/22/2014	1/24/2014	2	14	OK
TW4-13	Nitrate/Nitrite (as N)	1/22/2014	1/29/2014	7	28	OK

I-2: Holding Time Evaluation

Location ID	Parameter Name	Sample Date	Analysis Date	Hold Time (Days)	Allowed Hold Time (Days)	Hold Time Check
TW4-14	Carbon tetrachloride	1/22/2014	1/24/2014	2	14	OK
TW4-14	Chloride	1/22/2014	1/30/2014	8	28	OK
TW4-14	Chloroform	1/22/2014	1/24/2014	2	14	OK OK
TW4-14	Chloromethane	1/22/2014	1/24/2014	2	14	OK
TW4-14	Methylene chloride	1/22/2014	1/24/2014	2	14	OK
TW4-14	Nitrate/Nitrite (as N)	1/22/2014	1/29/2014	7	28	OK
MW-26	Carbon tetrachloride	1/27/2014	1/31/2014	4	14	OK
MW-26	Chloride	1/27/2014	2/4/2014	8	28	OK
MW-26	Chloroform	1/27/2014	2/1/2014	5	14	OK
MW-26	Chloromethane	1/27/2014	1/31/2014	4	14	OK
MW-26	Methylene chloride	1/27/2014	1/31/2014	4	14	OK
MW-26	Nitrate/Nitrite (as N)	1/27/2014	1/31/2014	4	28	OK
TW4-16	Carbon tetrachloride	1/29/2014	1/31/2014	2	14	OK
TW4-16	Chloride	1/29/2014	2/4/2014	6	28	OK
TW4-16	Chloroform	1/29/2014	1/31/2014	2	14	OK
TW4-16	Chloromethane	1/29/2014	1/31/2014	2	14	OK
TW4-16	Methylene chloride	1/29/2014	1/31/2014	2	14	OK
TW4-16	Nitrate/Nitrite (as N)	1/29/2014	1/31/2014	2	28	OK
MW-32	Carbon tetrachloride	1/29/2014	1/31/2014	2	14	OK
MW-32	Chloride	1/29/2014	2/3/2014	5	28	OK
MW-32	Chloroform	1/29/2014	1/31/2014	2	14	OK
MW-32	Chloromethane	1/29/2014	1/31/2014	2	14	OK
MW-32	Methylene chloride	1/29/2014	1/31/2014	2	14	OK
MW-32	Nitrate/Nitrite (as N)	1/29/2014	1/31/2014	2	28	OK
TW4-18	Carbon tetrachloride	1/30/2014	1/31/2014	1	14	OK
TW4-18	Chloride	1/30/2014	2/4/2014	5	28	OK
TW4-18	Chloroform	1/30/2014	1/31/2014	1	14	OK
TW4-18	Chloromethane	1/30/2014	1/31/2014		14	OK
TW4-18	Methylene chloride	1/30/2014	1/31/2014	1	14	OK
TW4-18	Nitrate/Nitrite (as N)	1/30/2014	1/31/2014	$\frac{1}{1}$	28	OK
TW4-19	Carbon tetrachloride	1/27/2014	1/31/2014	4	14	OK
TW4-19	Chloride	1/27/2014	2/4/2014	8	28	OK
TW4-19	Chloroform	1/27/2014	2/1/2014	5	14	OK
TW4-19	Chloromethane	1/27/2014	1/31/2014	4	14	OK
TW4-19	Methylene chloride	1/27/2014	1/31/2014	4	14	OK
TW4-19	Nitrate/Nitrite (as N)	1/27/2014	1/31/2014	4	28	OK
TW4-20	Carbon tetrachloride	1/27/2014	1/31/2014	4	14	OK
TW4-20	Chloride	1/27/2014	2/4/2014	8	28	OK
TW4-20	Chloroform	1/27/2014	2/2/2014	6	14	OK
TW4-20	Chloromethane	1/27/2014	1/31/2014	4	14	OK
TW4-20	Methylene chloride	1/27/2014	1/31/2014	4	14	OK
TW4-20	Nitrate/Nitrite (as N)	1/27/2014	1/31/2014	4	28	OK
TW4-21	Carbon tetrachloride	2/5/2014	2/10/2014	5	14	OK
TW4-21	Chloride	2/5/2014	2/11/2014	6	28	OK
TW4-21	Chloroform	2/5/2014	2/11/2014	6	14	OK
TW4-21	Chloromethane	2/5/2014	2/10/2014	5	14	OK
TW4-21	Methylene chloride	2/5/2014	2/10/2014	5	14	OK
TW4-21	Nitrate/Nitrite (as N)	2/5/2014	2/14/2014	9	28	OK
TW4-21	Carbon tetrachloride	1/27/2014	1/31/2014	4	14	OK
TW4-22	Chloride	1/27/2014	2/4/2014	8	28	OK
TW4-22	Chloroform	1/27/2014	2/1/2014	5	14	OK
TW4-22	Chloromethane	1/27/2014	1/31/2014	4	14	OK
TW4-22	Methylene chloride	1/27/2014	1/31/2014	4	14	OK
TW4-22	Nitrate/Nitrite (as N)	1/27/2014	1/31/2014	4	28	OK

Location ID	Parameter Name	Sample Date	Analysis Date	Hold Time (Days)	Allowed Hold Time (Days)	Hold Time Check
TW4-23	Carbon tetrachloride	1/23/2014	1/24/2014	11	14	OK
TW4-23	Chloride	1/23/2014	1/30/2014	7	28	OK
TW4-23	Chloroform	1/23/2014	1/24/2014	1	14	OK
TW4-23	Chloromethane	1/23/2014	1/24/2014	1 1	14	OK
TW4-23	Methylene chloride	1/23/2014	1/24/2014	1	14	OK
TW4-23	Nitrate/Nitrite (as N)	1/23/2014	1/29/2014	6	28	OK
TW4-24	Carbon tetrachloride	1/27/2014	1/31/2014	4	14	OK
TW4-24	Chloride	1/27/2014	2/4/2014	8	28	OK
TW4-24	Chloroform	1/27/2014	1/31/2014	4	14	OK
	Chloromethane	1/27/2014		4	14	
TW4-24			1/31/2014			OK
TW4-24	Methylene chloride	1/27/2014	1/31/2014	4	14	OK
TW4-24	Nitrate/Nitrite (as N)	1/27/2014	1/31/2014	4	28	OK
TW4-25	Carbon tetrachloride	1/27/2014	1/31/2014	4	14	OK
TW4-25	Chloride	1/27/2014	2/6/2014	10	28	OK
TW4-25	Chloroform	1/27/2014	1/31/2014	4	14	OK
TW4-25	Chloromethane	1/27/2014	1/31/2014	4	14	OK
TW4-25	Methylene chloride	1/27/2014	1/31/2014	4	14	OK
TW4-25	Nitrate/Nitrite (as N)	1/27/2014	1/31/2014	4	28	OK
TW4-26	Carbon tetrachloride	1/29/2014	1/31/2014	2	14	OK
TW4-26	Chloride	1/29/2014	2/4/2014	6	28	OK
TW4-26	Chloroform	1/29/2014	1/31/2014	2	14	OK
TW4-26	Chloromethane	1/29/2014	1/31/2014	2	14	OK
TW4-26	Methylene chloride	1/29/2014	1/31/2014	2	14	OK
TW4-26	Nitrate/Nitrite (as N)	1/29/2014	1/31/2014	2	28	OK
TW4-27	Carbon tetrachloride	1/23/2014	1/24/2014	1	14	OK
TW4-27	Chloride	1/23/2014	1/30/2014	7	28	OK
TW4-27	Chloroform	1/23/2014	1/24/2014	1	14	OK
TW4-27	Chloromethane	1/23/2014	1/24/2014	1	14	OK
TW4-27	Methylene chloride	1/23/2014	1/24/2014		14	OK
TW4-27	Nitrate/Nitrite (as N)	1/23/2014	1/29/2014	6	28	OK
TW4-27	Carbon tetrachloride	1/22/2014	1/24/2014	2	14	OK
					28	
TW4-28	Chloride	1/22/2014	1/30/2014	8		OK
TW4-28	Chloroform	1/22/2014	1/24/2014	2	14	OK
TW4-28	Chloromethane	1/22/2014	1/24/2014	2	14	OK
TW4-28	Methylene chloride	1/22/2014	1/24/2014	2	14	OK
TW4-28	Nitrate/Nitrite (as N)	1/22/2014	1/29/2014	7	28	OK
TW4-29	Carbon tetrachloride	2/5/2014	2/10/2014	5	14	OK
TW4-29	Chloride	2/5/2014	2/10/2014	5	28	OK
TW4-29	Chloroform	2/5/2014	2/11/2014	6	14	OK
TW4-29	Chloromethane	2/5/2014	2/10/2014	5	14	OK
TW4-29	Methylene chloride	2/5/2014	2/10/2014	5	14	OK
TW4-29	Nitrate/Nitrite (as N)	2/5/2014	2/14/2014	9	28	OK
TW4-29R	Carbon tetrachloride	2/4/2014	2/11/2014	7	14	OK
TW4-29R	Chloride	2/4/2014	2/11/2014	7	28	OK
TW4-29R	Chloroform	2/4/2014	2/11/2014	7	14	OK
TW4-29R	Chloromethane	2/4/2014	2/11/2014	7	14	OK
TW4-29R	Methylene chloride	2/4/2014	2/11/2014	7	14	OK
TW4-29R	Nitrate/Nitrite (as N)	2/4/2014	2/14/2014	10	28	OK
TW4-29R	Carbon tetrachloride	1/23/2014	1/24/2014	1	14	OK
TW4-30	Chloride	1/23/2014	1/30/2014	7	28	OK
TW4-30	Chloroform	1/23/2014	1/24/2014	1	14	OK
TW4-30	Chloromethane	1/23/2014	1/24/2014	11	14	OK
TW4-30	Methylene chloride	1/23/2014	1/24/2014	11	14	OK
TW4-30	Nitrate/Nitrite (as N)	1/23/2014	1/29/2014	6	28	OK

I-2: Holding Time Evaluation

		AL HEID ALE		Hold Time	Allowed Hold	Hold Time
Location ID	Parameter Name	Sample Date	Analysis Date	(Days)	Time (Days)	Check
TW4-31	Carbon tetrachloride	1/23/2014	1/24/2014		14	OK
TW4-31	Chloride	1/23/2014	1/30/2014	7	28	OK
TW4-31	Chloroform	1/23/2014	1/24/2014	1	14	OK
TW4-31	Chloromethane	1/23/2014	1/24/2014	11	14	OK
TW4-31	Methylene chloride	1/23/2014	1/24/2014	11	14	OK
TW4-31	Nitrate/Nitrite (as N)	1/23/2014	1/29/2014	6	28	OK
TW4-32	Carbon tetrachloride	1/22/2014	1/24/2014	2	14	OK
TW4-32	Chloride	1/22/2014	1/30/2014	8	28	OK
TW4-32	Chloroform	1/22/2014	1/24/2014	2	14	OK
TW4-32	Chloromethane	1/22/2014	1/24/2014	2	14	OK
TW4-32	Methylene chloride	1/22/2014	1/24/2014	2	14	OK
TW4-32	Nitrate/Nitrite (as N)	1/22/2014	1/29/2014	7	28	OK
TW4-33	Carbon tetrachloride	1/30/2014	1/31/2014	1	14	OK
TW4-33	Chloride	1/30/2014	2/4/2014	5	28	OK
TW4-33	Chloroform	1/30/2014	1/31/2014	1	14	OK
TW4-33	Chloromethane	1/30/2014	1/31/2014	1	14	OK
TW4-33	Methylene chloride	1/30/2014	1/31/2014	1	14	OK
TW4-33	Nitrate/Nitrite (as N)	1/30/2014	2/7/2014	8	28	OK
TW4-34	Carbon tetrachloride	1/23/2014	1/24/2014	1	14	OK
TW4-34	Chloride	1/23/2014	1/30/2014	7	28	OK
TW4-34	Chloroform	1/23/2014	1/24/2014	1	14	OK
TW4-34	Chloromethane	1/23/2014	1/24/2014	1 1	14	OK
TW4-34	Methylene chloride	1/23/2014	1/24/2014		14	OK
TW4-34	Nitrate/Nitrite (as N)	1/23/2014	1/29/2014	6	28	OK
TW4-60	Carbon tetrachloride	2/6/2014	2/10/2014	4	14	OK
TW4-60	Chloride	2/6/2014	2/11/2014	5	28	OK
TW4-60	Chloroform	2/6/2014	2/10/2014	4	14	OK
TW4-60	Chloromethane	2/6/2014	2/10/2014	4	14	OK
TW4-60	Methylene chloride	2/6/2014	2/10/2014	4	14	OK
TW4-60	Nitrate/Nitrite (as N)	2/6/2014	2/14/2014	8	28	OK
TW4-65	Carbon tetrachloride	1/22/2014	1/24/2014	2	14	OK
TW4-65	Chloride	1/22/2014	1/30/2014	8	28	OK
TW4-65	Chloroform	1/22/2014	1/24/2014	2	14	OK
TW4-65	Chloromethane	1/22/2014	1/24/2014	2	14	OK
TW4-65	Methylene chloride	1/22/2014	1/24/2014	2	14	OK
TW4-65	Nitrate/Nitrite (as N)	1/22/2014	1/29/2014	7	28	OK
MW-70	Carbon tetrachloride	1/29/2014	2/1/2014	3	14	OK
MW-70	Chloride	1/29/2014	2/4/2014	6	28	OK
MW-70	Chloroform	1/29/2014	2/1/2014	3	14	OK
MW-70	Chloromethane	1/29/2014	2/1/2014	3	14	OK
MW-70	Methylene chloride	1/29/2014	2/1/2014	3	14	OK
MW-70 MW-70	Nitrate/Nitrite (as N)	1/29/2014	1/31/2014	2	28	OK

Table I-3 Recipt Temperature Check

Sample Batch	Wells in Batch	Temperature	
1401421	TW4-03, TW4-03R, TW4-08, TW4-12, TW4-13, TW4-14, TW4-23TW4-27, TW4-28, TW4-30, TW4-31, TW4-32, TW4-34TW4-65	3.5 °C	
1401525	MW-04, TW4-04, TW4-05, TW4-06, TW4-09, MW-26, TW4-16, MW-32, TW4-18, TW4-19, TW4-20, TW4-22, TW4-24, TW4-25, TW4-26, TW4-33, TW4-70	2.7 °C	
1402140	TW4-01, TW4-02, TW4-07, TW4-08 Resample, TW4-10, TW4-11, TW4-21, TW4-29, TW4-29R, TW4-60	2.9 °C	

I-4 Analytical Method Check

Parameter	Method	Method Used by Lab
	SW8260B or	
Carbon Tetrachloride	SW8260C	SW8260C
	A4500-Cl B or	
	A4500-Cl E or	
Chloride	E300.0	E300.0
	SW8260B or	
Chloroform	SW8260C	SW8260C
	SW8260B or	
Chloromethane	SW8260C	SW8260C
	SW8260B or	
Methylene chloride	SW8260C	SW8260C
Nitrogen	E353.1 or E353.2	E353.2

All parameters were analyzed using the reporting method specificied in the QAP

	1-3	Reporting Li	int Check		D : 1	ALC: U.		
		Lab			Required		1 10	DA LIBROR
		Reporting			Reporting			DILUTION
Location	Analyte	Limit	Units	Qualifier	Limit	Units	RL Check	FACTOR
Trip Blank	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
Trip Blank	Chloroform	1	ug/L	U	1	ug/L	OK	1
Trip Blank	Chloromethane	1	ug/L	U	11	ug/L	OK	1
Trip Blank	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
Trip Blank	Carbon tetrachloride	11	ug/L	U	1	ug/L	OK	1
Trip Blank	Chloroform	11	ug/L	U	1	ug/L	OK	1
Trip Blank	Chloromethane	11	ug/L	U	1	ug/L	OK	_11
Trip Blank	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
Trip Blank	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
Trip Blank	Chloroform	1	ug/L	U	1	ug/L	OK	1
Trip Blank	Chloromethane	1	ug/L	U	1	ug/L	OK	1
Trip Blank	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
MW-04	Carbon tetrachloride	1	ug/L		1	ug/L	OK	1
MW-04	Chloride	10	mg/L		1	mg/L	OK	10
MW-04	Chloroform	20	ug/L		11	ug/L	OK	20
MW-04	Chloromethane	1	ug/L	U	1	ug/L	OK	1
MW-04	Methylene chloride	11	ug/L	U	1	ug/L	OK	1
MW-04	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-01	Carbon tetrachloride	1	ug/L		1	ug/L	OK	1
TW4-01	Chloride	5	mg/L		11	mg/L	OK	5
TW4-01	Chloroform	50	ug/L		1	ug/L	OK	50
TW4-01	Chloromethane	11	ug/L	U	1	ug/L	OK	1
TW4-01	Methylene chloride	11	ug/L	U	1	ug/L	OK	1
TW4-01	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-02	Carbon tetrachloride	1	ug/L		1	ug/L	OK	1
TW4-02	Chloride	10	mg/L		1	mg/L	OK	10
TW4-02	Chloroform	100	ug/L		1	ug/L	OK	100
TW4-02	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-02	Methylene chloride	1	ug/L	U	1	ug/L	OK	111
TW4-02	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-03	Carbon tetrachloride	1	ug/L	U	11	ug/L	OK	1
TW4-03	Chloride	5	mg/L		1	mg/L	OK	5
TW4-03	Chloroform	1	ug/L	U	1	ug/L	OK	1
TW4-03	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-03	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-03	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-03	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
TW4-03	Chloride	1	mg/L	U	1	mg/L	OK	1
TW4-03	Chloroform	11	ug/L	U	1	ug/L	OK	1
TW4-03	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-03	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-03	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	mg/L	OK	1
TW4-04	Carbon tetrachloride	1	ug/L		1	ug/L	OK	1
TW4-04	Chloride	10	mg/L		1	mg/L	OK	10
TW4-04	Chloroform	20	ug/L		1	ug/L	OK	20
TW4-04	Chloromethane		ug/L	U	1	ug/L	OK	11
TW4-04	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-04	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-05	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
TW4-05	Chloride	5	mg/L		1	mg/L	OK	5
TW4-05	Chloroform	1	ug/L		1	ug/L	OK	1
TW4-05	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-05	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-05	Nitrate/Nitrite (as N)	1	mg/L	-	0.1	mg/L	OK	10

K. III.	1-3.	Reporting Li	init Check		Deswined	Charles To		THE TANK
		Lab		5-1-6	Required			DILLETION
		Reporting	TT 14	0.00	Reporting	TT	DI Cl. I	DILUTION
Location	Analyte	Limit	Units	Qualifier	Limit	Units	RL Check	FACTOR
TW4-06	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
TW4-06	Chloride	10	mg/L		1	mg/L	OK	10
TW4-06	Chloroform	1	ug/L		1	ug/L	OK	11
TW4-06	Chloromethane	1	ug/L	U	1	ug/L	OK	11
TW4-06	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-06	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK	1
TW4-07	Carbon tetrachloride	1	ug/L		1	ug/L	OK	1
TW4-07	Chloride	5	mg/L		1	mg/L	OK	5
TW4-07	Chloroform	50	ug/L		1	ug/L	OK	50
TW4-07	Chloromethane	11	ug/L	U	11	ug/L	OK	11
TW4-07	Methylene chloride	11	ug/L	U	1	ug/L	OK	1
TW4-07	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-08	Carbon tetrachloride	11	ug/L	U	1	ug/L	OK	1
TW4-08	Chloride	10	mg/L		1	mg/L	OK	10
TW4-08	Chloroform	1	ug/L		1	ug/L	OK	1
TW4-08	Chloromethane	1	ug/L	U	1	ug/L	OK	11
TW4-08	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-08	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK	1
TW4-08	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
TW4-08	Chloride	10	mg/L		11	mg/L	OK	10
TW4-08	Chloroform	1	ug/L		1	ug/L	OK	11
TW4-08	Chloromethane	1	ug/L	U	11	ug/L	OK	11
TW4-08	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-08	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK	1
TW4-09	Carbon tetrachloride	11	ug/L	U	1	ug/L	OK	11
TW4-09	Chloride	5	mg/L		11	mg/L	OK	5
TW4-09	Chloroform	1	ug/L	U	1	ug/L	OK	1
TW4-09	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-09	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-09	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-10	Carbon tetrachloride	1	ug/L		11	ug/L	OK	1
TW4-10	Chloride	10	mg/L		1	mg/L	OK	10
TW4-10	Chloroform	100	ug/L		1	ug/L	OK	100
TW4-10	Chloromethane	111	ug/L	U	1	ug/L	OK	1
TW4-10	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-10	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-11	Carbon tetrachloride	1	ug/L		1	ug/L	OK	1
TW4-11	Chloride	10	mg/L		1	mg/L	OK	10
TW4-11	Chloroform	20	ug/L		1	ug/L	OK	20
TW4-11	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-11	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-11	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-12	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	11
TW4-12	Chloride	5	mg/L		1	mg/L	OK	5
TW4-12	Chloroform	1	ug/L	U	1	ug/L	OK	1
TW4-12	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-12	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-12	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-13	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
TW4-13	Chloride	10	mg/L		1	mg/L	OK	10
TW4-13	Chloroform	1	ug/L	U	1	ug/L	OK	1
TW4-13	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-13	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-13	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10

	1-5	Reporting Li	int Check	Partie PE				
1 - E		Lab		- 10 100	Required			
	3.74	Reporting		5 1 5 1	Reporting	A 1 7 1 .		DILUTION
Location	Analyte	Limit	Units	Qualifier	Limit	Units	RL Check	FACTOR
TW4-14	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
TW4-14	Chloride	5	mg/L		1	mg/L	OK	5
TW4-14	Chloroform	1	ug/L	U	1	ug/L	OK	1
TW4-14	Chloromethane	1	ug/L	U	1 /	ug/L	OK	1
TW4-14	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-14	Nitrate/Nitrite (as N)	11	mg/L		0.1	mg/L	OK	10
MW-26	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
MW-26	Chloride	10	mg/L		1	mg/L	OK	10
MW-26	Chloroform	50	ug/L		1	ug/L	OK	50
MW-26	Chloromethane	1	ug/L	U	1	ug/L	OK	1
MW-26	Methylene chloride	1	ug/L		i	ug/L	OK	1
MW-26	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK	1
TW4-16	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
TW4-16	Chloride	10	mg/L		1	mg/L	OK	10
TW4-16	Chloroform	1	ug/L		1	ug/L	OK	1
TW4-16	Chloromethane	1	ug/L	U	1	ug/L ug/L	OK	1
TW4-16	Methylene chloride	1	ug/L ug/L	U	1	ug/L ug/L	OK	1
TW4-16	Nitrate/Nitrite (as N)	1	mg/L	0	0.1	mg/L	OK	10
MW-32	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	10
MW-32	Chloride	5	mg/L	- 0	1	mg/L	OK	5
MW-32	Chloroform	1	ug/L	U	1	ug/L	OK	1
				U			OK	
MW-32	Chloromethane	1 1	ug/L	U	1	ug/L	OK	1
MW-32	Methylene chloride		ug/L	U	1	ug/L		11
MW-32	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	mg/L	OK	11
TW4-18	Carbon tetrachloride	1 7	ug/L	U	1	ug/L	OK	1
TW4-18	Chloride	5	mg/L		1	mg/L	OK	5
TW4-18	Chloroform	1	ug/L		1	ug/L	OK	1
TW4-18	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-18	Methylene chloride	1	ug/L	U	1	ug/L	OK	11
TW4-18	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-19	Carbon tetrachloride	1	ug/L		1	ug/L	OK	1
TW4-19	Chloride	50	mg/L		1	mg/L	OK	50
TW4-19	Chloroform	10	ug/L		1	ug/L	OK	10
TW4-19	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-19	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-19	Nitrate/Nitrite (as N)	0.5	mg/L		0.1	mg/L	OK	5
TW4-20	Carbon tetrachloride	11	ug/L		11	ug/L	OK	11
TW4-20	Chloride	50	mg/L		1	mg/L	OK	50
TW4-20	Chloroform	500	ug/L		1	ug/L	OK	500
TW4-20	Chloromethane	1	ug/L	U	1	ug/L	OK	11
TW4-20	Methylene chloride	1	ug/L		1	ug/L	OK	11
TW4-20	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-21	Carbon tetrachloride	1	ug/L		1	ug/L	OK	1
TW4-21	Chloride	50	mg/L		1	mg/L	OK	50
TW4-21	Chloroform	10	ug/L		1	ug/L	OK	10
TW4-21	Chloromethane	1	ug/L	U	1	ug/L	OK	11
TW4-21	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-21	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-22	Carbon tetrachloride	1	ug/L		1	ug/L	OK	1
TW4-22	Chloride	100	mg/L		1	mg/L	OK	100
TW4-22	Chloroform	100	ug/L		1	ug/L	OK	100
TW4-22	Chloromethane	1	ug/L ug/L	U	1	ug/L	OK	1
		1				ug/L ug/L	OK	1
TW4-22	Methylene chloride		ug/L			11071	I (IK	

		Lab	113		Required		The state of	
		Reporting		50 50°E	Reporting		A DELL	DILUTION
Location	Analyte	Limit	Units	Qualifier	Limit	Units	RL Check	FACTOR
TW4-23	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
TW4-23	Chloride	10	mg/L		1	mg/L	OK	10
TW4-23	Chloroform	1	ug/L	U	1	ug/L	OK	1
TW4-23	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-23	Methylene chloride	. 1	ug/L	U	1	ug/L	OK	1
TW4-23	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	mg/L	OK	11
TW4-24	Carbon tetrachloride	11	ug/L	U	1	ug/L	OK	11
TW4-24	Chloride	500	mg/L		1	mg/L	OK	500
TW4-24	Chloroform	1	ug/L		1	ug/L	OK	1
TW4-24	Chloromethane	1	ug/L	U	1	ug/L	OK	1 .
TW4-24	Methylene chloride	1	ug/L		1	ug/L	OK	11
TW4-24	Nitrate/Nitrite (as N)	10	mg/L		0.1	mg/L	OK	100
TW4-25	Carbon tetrachloride	11	ug/L	U	1	ug/L	OK	1
TW4-25	Chloride	10	mg/L		1	mg/L	OK	10
TW4-25	Chloroform	1	ug/L	U	11	ug/L	OK	1
TW4-25	Chloromethane	11	ug/L	U	1	ug/L	OK	1
TW4-25	Methylene chloride	1	ug/L	U	11	ug/L	OK	1
TW4-25	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-26	Carbon tetrachloride	11	ug/L	U	1	ug/L	OK	1
TW4-26	Chloride	5	mg/L		1	mg/L	OK	5
TW4-26	Chloroform	1	ug/L		1	ug/L	OK	1
TW4-26	Chloromethane	1	ug/L	U	11	ug/L	OK	1
TW4-26	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-26	Nitrate/Nitrite (as N)	111	mg/L		0.1	mg/L	OK	10
TW4-27	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
TW4-27	Chloride	5	mg/L		1	mg/L	OK	5
TW4-27	Chloroform	1	ug/L	U	11	ug/L	OK	1
TW4-27	Chloromethane	1	ug/L	U	1	ug/L	OK	11
TW4-27	Methylene chloride		ug/L	U	11	ug/L	OK	11
TW4-27	Nitrate/Nitrite (as N)	5	mg/L		0.1	mg/L	OK	50
TW4-28	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
TW4-28	Chloride	10	mg/L		1	mg/L	OK	10
TW4-28	Chloroform	1	ug/L	U	1	ug/L	OK	11
TW4-28	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-28	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-28	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-29	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
TW4-29	Chloride	5	mg/L		1	mg/L	OK	5
TW4-29	Chloroform	10	ug/L		1	ug/L	OK	10
TW4-29	Chloromethane	1'	ug/L	U	1	ug/L	OK	1
TW4-29	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-29	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-29	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
TW4-29	Chloride	1	mg/L	U	1	mg/L	OK	11
TW4-29	Chloroform	11	ug/L	U	1	ug/L	OK	11
TW4-29	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-29	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-29	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	mg/L	OK	1
TW4-30	Carbon tetrachloride	1	ug/L	U	11	ug/L	OK	1
TW4-30	Chloride	5	mg/L		1	mg/L	OK	5
TW4-30	Chloroform	1	ug/L	U	1	ug/L	OK	1
TW4-30	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-30	Methylene chloride	1	ug/L	U	11	ug/L	OK	1
TW4-30	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK	1

		Lab Reporting	WEE CO		Required Reporting		DI Ch. I	DILUTION
Location	Analyte	Limit	Units	Qualifier	Limit	Units	RL Check	FACTOR
TW4-31	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
TW4-31	Chloride	5	mg/L		1	mg/L	OK	5
TW4-31	Chloroform	1	ug/L	U	11	ug/L	OK	11
TW4-31	Chloromethane	1	ug/L	U	1	ug/L	OK	11
TW4-31	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-31	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK	1
TW4-32	Carbon tetrachloride	11	ug/L	U	1	ug/L	OK	1
TW4-32	Chloride	10	mg/L		1	mg/L	OK	10
TW4-32	Chloroform	1	ug/L	U	1	ug/L	OK	1
TW4-32	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-32	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-32	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-33	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
TW4-33	Chloride	10	mg/L		1	mg/L	OK	10
TW4-33	Chloroform	1	ug/L		1	ug/L	OK	11
TW4-33	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-33	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-33	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
TW4-34	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
TW4-34	Chloride	5	mg/L		1	mg/L	OK	5
TW4-34	Chloroform	1	ug/L	U	1	ug/L	OK	1
TW4-34	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-34	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-34	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK	1
TW4-60	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
TW4-60	Chloride	1	mg/L	U	_111	mg/L	OK	1
TW4-60	Chloroform	1	ug/L	U	11	ug/L	OK	1
TW4-60	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-60	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-60	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	mg/L	OK	1
TW4-65	Carbon tetrachloride	1	ug/L	U	1	ug/L	OK	1
TW4-65	Chloride	10	mg/L		1	mg/L	OK	10
TW4-65	Chloroform	1	ug/L	U	1	ug/L	OK	1
TW4-65	Chloromethane	1	ug/L	U	1	ug/L	OK	1
TW4-65	Methylene chloride	1	ug/L	U	1	ug/L	OK	1
TW4-65	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	10
MW-70	Carbon tetrachloride	1		U	1	ug/L	OK	1
MW-70	Chloride	5			1	mg/L	OK	5
MW-70	Chloroform	1		U	1	ug/L	OK	1
MW-70	Chloromethane	1		U	1	ug/L	OK	1
MW-70	Methylene chloride	1		U	1	ug/L	OK	1
MW-70	Nitrate/Nitrite (as N)	0.1		U	0.1	mg/L	OK	1

U =The value was reported by the laboratory as nondetect

I-6 Trip Blank Evaluation

Lab Report	Constituent	Result
1401421	Carbon tetrachloride	ND ug/L
	Chloroform	ND ug/L
	Chloromethane	ND ug/L
	Methylene chloride	ND ug/L
1401525	Carbon tetrachloride	ND ug/L
	Chloroform	ND ug/L
	Chloromethane	ND ug/L
	Methylene chloride	ND ug/L
1402140	Carbon tetrachloride	ND ug/L
	Chloroform	ND ug/L
	Chloromethane	ND ug/L
	Methylene chloride	ND ug/L

I-7 QA/QC Evaluation for Sample Duplicates

Constituent	TW4-28	TW4-65	%RPD
Chloride (mg/L)	47.8	47.5	1
Nitrate + Nitrite (as N)	16.9	18.1	7
Carbon Tetrachloride	ND	ND	NC
Chloroform	ND	ND	NC
Chloromethane	ND	ND	NC
Dichloromethane (Methylene Chloride)	ND	ND	NC

Constituent	MW-32	TW4-70	%RPD
Chloride (mg/L)	34.0	34.2	0.59
Nitrate + Nitrite (as N)	ND	ND	NC
Carbon Tetrachloride	ND	ND	NC
Chloroform	ND	ND	NC
Chloromethane	ND	ND	NC
Dichloromethane (Methylene Chloride)	ND	ND	NC

RPD = Relative Percent Difference

ND = The analyte was not detected

I-8 QC Control Limits for Analysis and Blanks

Method Blank Detections

All Method Blanks for the quarter were non-detect.

Matrix Spike % Recovery Comparison

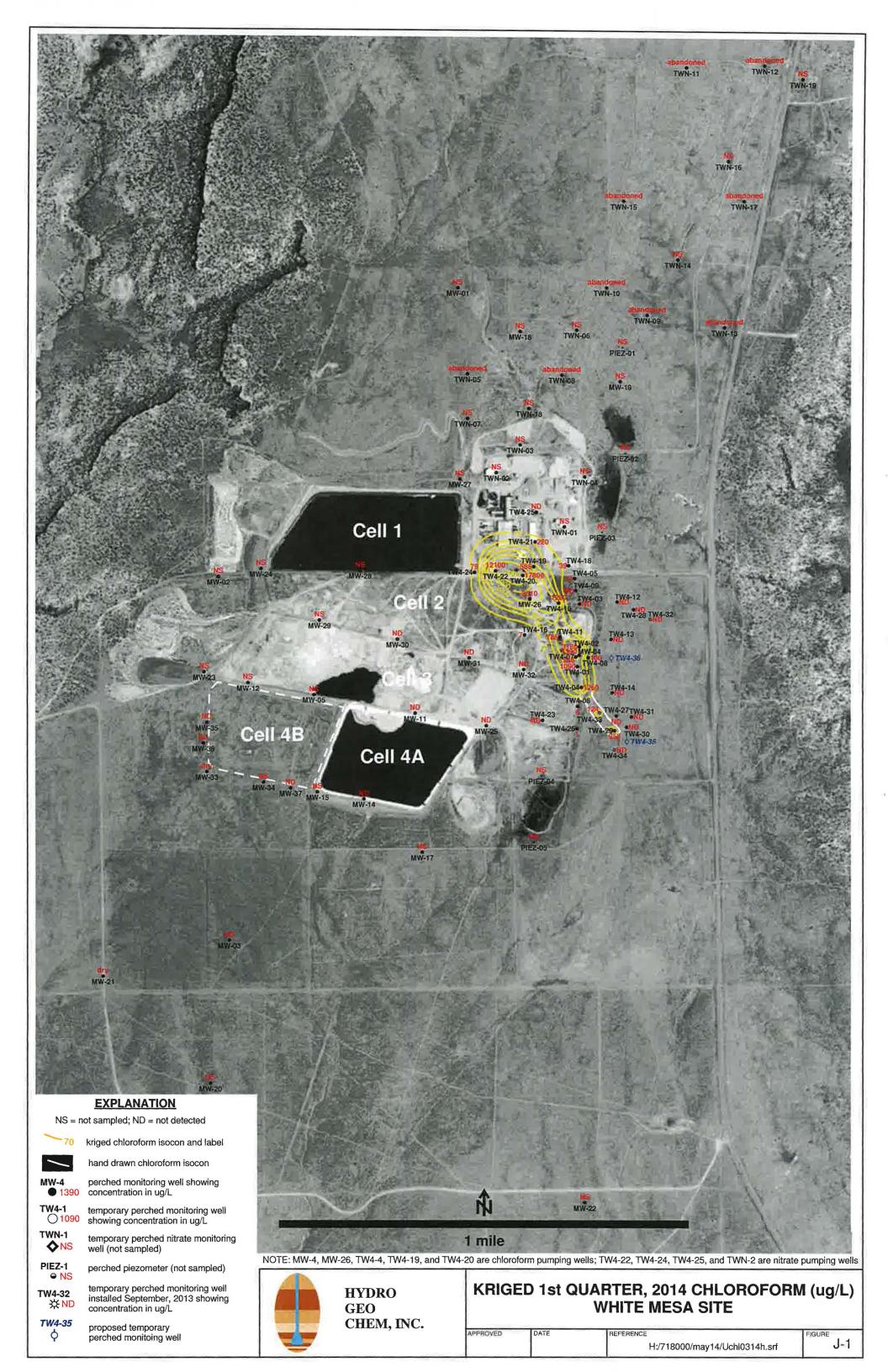
Lab Report	Lab Sample ID	Well	Analyte	MS % REC	MSD %REC	REC Range	RPD
1401421	1401421-001BMS	TW4-03	Nitrate	123	109	90 - 110	7.46
1401421	1401421-004BMS	TW4-32	Nitrate	110	114	90 - 110	2.21

Laboratory Control Sample

All Laboratory Control Samples were within acceptance limits for the quarter.

Surrogate % Recovery

All Surrogate recoveries were within acceptance limits for the quarter.


I-9 Rinsate Evaluation

All rinsate samples for the quarter were non-detect.

Rinsate Sample	Constituent	Result		
	Constituent	ICS	OI C	
TW4-03R	Carbon tetrachloride	ND	ug/L	
	Chloroform	ND	ug/L	
	Chloromethane	ND	ug/L	
	Methylene chloride	ND	ug/L	
	Chloride	ND	mg/L	
	Nitrate	ND	mg/L	
TW4-29R	Carbon tetrachloride	ND	ug/L	
	Chloroform	ND	ug/L	
	Chloromethane	ND	ug/L	
	Methylene chloride	ND	ug/L	
	Chloride	ND	mg/L	
	Nitrate	ND	mg/L	

Tab J

Kriged Current Quarter Chloroform Isoconcentration Map

Tab K Analyte Concentrations Over Time

MW-4	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
28-Sep-99	6200	(ug/i)				
28-Sep-99	5820					
28-Sep-99	6020					
15-Mar-00	5520					
15-Mar-00	5430					
2-Sep-00	5420				9.63	
30-Nov-00	6470				9.37	
29-Mar-01	4360				8.77	
22-Jun-01	6300				9.02	
20-Sep-01	5300				9.45	
8-Nov-01	5200				8	
26-Mar-02	4700				8.19	
22-May-02	4300				8.21	
12-Sep-02	6000				8.45	
24-Nov-02	2500				8.1	
28-Mar-03	2000				8.3	
30-Apr-03	3300				NA	
30-May-03	3400				8.2	
23-Jun-03	4300				8.2	
30-Jul-03	3600				8.1	
29-Aug-03	4100				8.4	
12-Sep-03	3500				8.5	
15-Oct-03	3800				8.1	
8-Nov-03	3800				8	
29-Mar-04	NA				NA	
22-Jun-04	NA				NA	
17-Sep-04	3300				6.71	
17-Nov-04	4300				7.5	
16-Mar-05	2900				6.3	
25-May-05	3170	NA	NA	NA	7.1	NA
31-Aug-05	3500	<10	<10	<10	7.0	NA
1-Dec-05	3000	<50	<50	<50	7.0	NA
9-Mar-06	3100	<50	<50	50	6	49
14-Jun-06	3000	<50	<50	50	6	49
20-Jul-06	2820	<50	<50	<50	1.2	48
9-Nov-06	2830	2.1	1.4	<1	6.4	50
28-Feb-07	2300	1.6	<1	<1	6.3	47
27-Jun-07	2000	1.8	<1	<1	7	45
15-Aug-07	2600	1.9	<1	<1	6.2	47
10-Oct-07	2300	1.7	<1	<1	6.2	45
26-Mar-08	2400	1.7	<1	<1	5.8	42
25-Jun-08	2500	1.6	<1	<1	6.09	42
10-Sep-08	1800	1.8	<1	<1	6.36	35
15-Oct-08	2100	1.7	<1	<1	5.86	45
4-Mar-09	2200	1.5	<1	<1	5.7	37

MW-4	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
23-Jun-09	1800	1.3	<1	<1	5.2	34
14-Sep-09	2000	1.4	<1	<1	5.3	43
14-Dec-09	1800	1.6	ND	ND	5.8	44
17-Feb-10	1600	1.2	ND	ND	4	45
14-Jun-10	2100	1.2	ND	ND	5.1	41
16-Aug-10	1900	1.5	ND	ND	4.8	38
11-Oct-10	1500	1.4	ND	ND	4.9	41
23-Feb-11	1700	1.5	ND	ND	4.6	40
1-Jun-11	1700	1.4	ND	ND	4.9	35
17-Aug-11	1700	1.1	ND	ND	4.9	41
16-Nov-11	1600	1.3	ND	ND	5.1	40
23-Jan-12	1500	1	ND	ND	4.8	41
6-Jun-12	1400	1.2	ND	ND	4.9	39
4-Sep-12	1500	1.5	ND	ND	5	41
4-Oct-12	1300	1	ND	ND	4.8	42
11-Feb-13	1670	1.49	ND	ND	4.78	37.8
5-Jun-13	1490	1.31	ND	ND	4.22	44
3-Sep-13	1520	1.13	ND	ND	4.89	41.4
29-Oct-13	1410	5.58	ND	ND	5.25	40.1
27-Jan-14	1390	4.15	ND	ND	4.7	38.5

TW4-1	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
28-Jun-99	1700	0.15.			7.2	
10-Nov-99	5.8					
15-Mar-00	1100					
10-Apr-00	1490					
6-Jun-00	1530					
2-Sep-00	2320				5.58	
30-Nov-00	3440				7.79	
29-Mar-01	2340				7.15	
22-Jun-01	6000	,			8.81	
20-Sep-01					12.8	
8-Nov-01	3200				12.4	
26-Mar-02	3200				13.1	
22-May-02	2800				12.7	
12-Sep-02	3300				12.8	
24-Nov-02	3500				13.6	
28-Mar-03	3000				12.4	
23-Jun-03	3600				12.5	
12-Sep-03	2700				12.5	
8-Nov-03	3400				11.8	
29-Mar-04	3200				11	
22-Jun-04	3100				8.78	
17-Sep-04	2800				10.8	
17-Nov-04	3000				11.1	
16-Mar-05	2700				9.1	
25-May-05	3080	NA	NA	NA	10.6	NA
31-Aug-05	2900	<10	<10	<10	9.8	NA
1-Dec-05	2400	<50	<50	<50	9.7	NA
9-Mar-06	2700	<50	<50	<50	9.4	49
14-Jun-06	2200	<50	<50	<50	9.8	48
20-Jul-06	2840	<50	<50	<50	9.7	51
8-Nov-06	2260	1.4	<1	<1	9.4	47
28-Feb-07	1900	1.2	<1	<1	8.9	47
27-Jun-07	1900	1.4	<1	<1	9	45
15-Aug-07	2300	1.3	<1	<1	8.4	43
10-Oct-07	2000	1.3	<1	<1	7.8	43
26-Mar-08	2000	1.3	<1	<1	7.6	39
25-Jun-08	1900	1.1	<1	<1	8.68	39
10-Sep-08	1700	1.3	<1	<1	8.15	35
15-Oct-08	1700	1.3	<1	<1	9.3	41

TW4-1	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
11-Mar-09	1700	1.1	<1	<1	7.5	37
24-Jun-09	1500	1	<1	<1	6.9	37
15-Sep-09	1700	<1	<1	<1	7.3	36
29-Dec-09	1400	<1	<1	<1	6.8	41
3-Mar-10	1300	<1	<1	<1	7.1	35
15-Jun-10	1600	1.2	<l< td=""><td><1</td><td>6.8</td><td>40</td></l<>	<1	6.8	40
24-Aug-10	1500	<l< td=""><td><1</td><td><1</td><td>6.8</td><td>35</td></l<>	<1	<1	6.8	35
14-Oct-10	1500	<1	<1	<1	6.6	40
24-Feb-11	1300	ND	ND	ND	6.6	41
1-Jun-11	1200	ND	ND	ND	7	35
18-Aug-11	1300	ND	ND	ND	6.8	36
29-Nov-11	1300	ND	ND	ND	6.6	37
19-Jan-12	1300	ND	ND	ND	6.8	38
14-Jun-12	1000	ND	ND	ND	7.1	42
13-Sep-12	1000	ND	ND	ND	5	39
4-Oct-12	1100	ND	ND	ND	6.5	40
13-Feb-13	1320	3.66	ND	ND	6.99	37.6
19-Jun-13	1100	ND	ND	ND	6.87	39.1
12-Sep-13	1150	ND	ND	ND	7.12	37.6
14-Nov-13	1280	ND	ND	ND	7.08	36.5
5-Feb-14	1090	5.47	ND	ND	7.74	38.9

TW4-2	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
10-Nov-99	2510					
2-Sep-00	5220					
28-Nov-00	4220				10.7	
29-Mar-01	3890				10.2	
22-Jun-01	5500				9.67	
20-Sep-01	4900				11.4	
8-Nov-01	5300				10.1	
26-Mar-02	5100				9.98	
23-May-02	4700				9.78	
12-Sep-02	6000				9.44	
24-Nov-02	5400				10.4	
28-Mar-03	4700				9.5	
23-Jun-03	5100				9.6	
12-Sep-03	3200				8.6	
8-Nov-03	4700				9.7	
29-Mar-04	4200				9.14	
22-Jun-04	4300				8.22	
17-Sep-04	4100				8.4	
17-Nov-04	4500				8.6	
16-Mar-05	3700				7.7	
25-May-05	3750				8.6	
31-Aug-05	3900	<10	<10	<10	8	NA
1-Dec-05	3500	<50	<50	<50	7.8	NA
9-Mar-06	3800	<50	<50	<50	7.5	56
14-Jun-06	3200	<50	<50	<50	7.1	56
20-Jul-06	4120	<50	<50	<50	7.4	54
8-Nov-06	3420	2.3	<1	<1	7.6	55
28-Feb-07	2900	1.8	<1	<1	7.3	54
27-Jun-07	3000	2.5	<1	<1	7.8	50
15-Aug-07	340	2.2	<1	<1	7.3	49
10-Oct-07	3200	2.1	<1	<1	6.9	51
26-Mar-08	3300	2.3	<1	<1	6.9	48
25-Jun-08	3100	2.2	<1	<1	7.44	46
10-Sep-08	2800	2.4	<1	<1	7.1	42
15-Oct-08	3200	2.4	<2	<2	7.99	47
11-Mar-09	3100	2.2	<1<1	<1	6.5	46
24-Jun-09	2800	2	<1	<1	6.4	44
15-Sep-09	3000	2	<1	<1	6.6	43
29-Dec-09	1600	2	<1	<1	6.4	46

TW4-2	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
3-Mar-10	2600	2	<1	<1	6.8	42
15-Jun-10	3300	2.6	<1	<1	6.7	43
16-Aug-10	3300	2.5	<1	<1	6.6	43
14-Oct-10	3000	2.1	<1	<1	6.5	41
24-Feb-11	3100	2.4	ND	ND	7	46
2-Jun-11	3000	2.2	ND	ND	6.8	42
17-Aug-11	2400	1.6	ND	ND	6	48
29-Nov-11	3900	2.8	ND	ND	7	49
24-Jan-12	2500	2	ND	ND	7.1	49
14-Jun-12	2500	2.1	ND	ND	7.7	52
13-Sep-12	2900	1.8	ND	ND	4	76
4-Oct-12	3100	2	ND	ND	7.6	49
13-Feb-13	3580	5.17	ND	ND	8.1	46
19-Jun-13	3110	2.65	ND	ND	7.51	46.9
12-Sep-13	3480	2.41	ND	ND	9.3	44.9
14-Nov-13	3740	3.15	ND	ND	8.39	43.9
6-Feb-14	3180	7.1	ND	ND	7.87	45.9

TW4-3	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
28-Jun-99	3500				7.6	
29-Nov-99	702					
15-Mar-00	834					
2-Sep-00	836				1.56	
29-Nov-00	836				1.97	
27-Mar-01	347				1.85	
21-Jun-01	390				2.61	
20-Sep-01	300				3.06	
7-Nov-01	170				3.6	
26-Mar-02	11				3.87	
21-May-02	204				4.34	
12-Sep-02	203				4.32	
24-Nov-02	102				4.9	
28-Mar-03	0				4.6	
23-Jun-03	0				4.8	1
12-Sep-03	0				4.3	<u> </u>
8-Nov-03	0				4.8	
29-Mar-04	0				4.48	
22-Jun-04	0				3.68	
17-Sep-04	0				3.88	
17-Nov-04	0				4.1	
16-Mar-05	0				3.5	
25-May-05	<1	NA	NA	NA	3.7	NA
31-Aug-05	<1	<1	6.4	<1	3.5	NA
1-Dec-05	<1	<1	2.3	<1	3.3	NA
9-Mar-06	<1	<1	2.2	<1	3.3	26
14-Jun-06	<1	<1	<1	<1	3.2	26
20-Jul-06	<1	<1	1.6	<1	2.9	26
8-Nov-06	<1	<1	<1	<1	1.5	23
28-Feb-07	<1	<1	<1	<1	3.1	22
27-Jun-07	<1	<1	<1	<1	3.3	23
15-Aug-07	<1	<1	<1	<1	3.1	24
10-Oct-07	<1	<1	<1	<1	2.8	27
26-Mar-08	<1	<1	<1	<1	2.8	21
25-Jun-08	<1	<1	<1	<l< td=""><td>2.85</td><td>19</td></l<>	2.85	19
10-Sep-08	<1	<1	<1	<1	2.66	19
15-Oct-08	<1	<1	<1	<1	2.63	22
4-Mar-09	<1	<1	<1	<1	2.5	21
24-Jun-09	<1	<1	<1	<1	2.9	20

TW4-3	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
15-Sep-09	<l< td=""><td><1</td><td><1</td><td><l< td=""><td>2.8</td><td>21</td></l<></td></l<>	<1	<1	<l< td=""><td>2.8</td><td>21</td></l<>	2.8	21
16-Dec-09	<1	<1	<1	<1	2.5	22
23-Feb-10	<1	<1	<1	<1	2.8	23
8-Jun-10	<1	<1	<1	<1	3	24
10-Aug-10	<1	<1	<1	<1	3.1	22
5-Oct-10	<1	<1	<1	<1	3.3	26
15-Feb-11	ND	ND	ND	ND	3.5	23
25-May-11	ND	ND	ND	ND	3.7	23
16-Aug-11	ND	ND	ND	ND	4	23
15-Nov-11	ND	ND	ND	ND	4.4	23
17-Jan-12	ND	ND	ND	ND	4.3	21
31-May-12	ND	ND	ND	ND	4.4	24
29-Aug-12	ND	ND	ND	ND	4.9	25
3-Oct-12	ND	ND	ND	ND	4.8	25
7-Feb-13	ND	ND	ND	ND	5.05	23.7
29-May-13	ND	ND	ND	ND	5.83	23.8
29-Aug-13	ND	ND	ND	ND	6.26	24.0
6-Nov-13	ND	ND	ND	ND	5.89	24.1
22-Jan-14	ND	ND	ND	ND	6.66	24.9

TW4-4	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
6-Jun-00	0					
2-Sep-00	0					
28-Nov-00	3.9					
28-Mar-01	2260				1.02	
20-Jun-01	3100				14.5	
20-Sep-01	3200				14	
8-Nov-01	2900				14.8	
26-Mar-02	3400				15	
22-May-02	3200				13.2	
12-Sep-02	4000	i			13.4	
24-Nov-02	3800				12.6	1
28-Mar-03	3300				13.4	
23-Jun-03	3600				12.8	
12-Sep-03	2900				12.3	
8-Nov-03	3500				12.3	
29-Mar-04	3200				12.2	
22-Jun-04	3500				12.1	
17-Sep-04	3100				11.1	
17-Nov-04	3600				10.8	
16-Mar-05	3100				11.6	
25-May-05	2400	NA	NA	NA	11.3	NA
31-Aug-05	3200	<10	<10	<10	9.9	NA
1-Dec-05	2800	<50	<50	<50	10.2	NA
9-Mar-06	2900	<50	<50	<50	9.5	51
14-Jun-06	2600	<50	<50	<50	8.6	48
20-Jul-06	2850	<50	<50	<50	9.7	50
8-Nov-06	2670	1.7	<1	<1	10.1	49
28-Feb-07	2200	1.5	<1	<1	9	49
27-Jun-07	2400	1.7	<1	<1	9.4	47
15-Aug-07	2700	1.5	<1	<1	9.5	45
10-Oct-07	2500	1.5	<1	<1	9.5	47
26-Mar-08	2800	1.6	<l< td=""><td><1</td><td>9.2</td><td>43</td></l<>	<1	9.2	43
25-Jun-08	2500	1.5	<1	<1	10.8	42
10-Sep-08	2200	1.4	<1	<1	8.83	39
15-Oct-08	2500	2	<2	<2	10.1	44
4-Mar-09	2200	1.2	<1	<1	10.2	37
24-Jun-09	1800	1.2	<1	<1	8.2	34
15-Sep-09	2000	1.1	<1	<1	8,4	39
29-Dec-09	950	1.1	<1	<1	7.6	41

TW4-4	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
17-Feb-10	1700	1	<1	<1	6.6	48
10-Jun-10	2000	1.2	<1	<1	7.6	35
16-Aug-10	2100	1.3	<1	<1	7.3	36
11-Oct-10	1700	1.3	<1	<1	7.1	38
23-Feb-11	1800	1.4	ND	ND	7	41
1-Jun-11	1700	1.2	ND	ND	7	35
17-Aug-11	1500	ND	ND	ND	6.6	40
16-Nov-11	1500	1	ND	ND	7	39
23-Jan-12	1200	ND	ND	ND	7.1	38
6-Jun-12	1500	ND	ND	ND	7.1	43
4-Sep-12	1600	1.2	ND	ND	7.1	39
3-Oct-12	1400	1	ND	ND	7	38
11-Feb-13	1460	1.12	ND	ND	7.36	39
5-Jun-13	1330	ND	ND	ND	6.3	39.6
3-Sep-13	1380	ND	ND	ND	7.22	38.8
29-Oct-13	1360	5.3	ND	ND	7.84	43.9
27-Jan-14	1260	3.88	ND	ND	7.28	37.4

TW4-5	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
20-Dec-99	29.5					
15-Mar-00	49.0					
2-Sep-00	124					
29-Nov-00	255					
28-Mar-01	236					
20-Jun-01	240					
20-Sep-01	240					
7-Nov-01	260					
26-Mar-02	260					
22-May-02	300					
12-Sep-02	330					
24-Nov-02	260				-	
28-Mar-03	240					
23-Jun-03	290					
12-Sep-03	200					
8-Nov-03	240					
29-Mar-04	210					
22-Jun-04	200					
17-Sep-04	150					
17-Nov-04	180					
16-Mar-05	120					
25-May-05	113	NA	NA	NA	3.7	NA
31-Aug-05	82.0	<2.5	5.8	<2.5	6	NA
1-Dec-05	63.0	<2.5	2.5	<2.5	6	NA
9-Mar-06	66.0	<2.5	3.1	<2.5	6	52
14-Jun-06	51.0	<1	<2.5	<2.5	5.9	51
20-Jul-06	53.7	<1	<1	<1	6.7	54
8-Nov-06	47.1	<1	<1	<1	2.9	55
28-Feb-07	33.0	<1	<1	<1	7.8	57
27-Jun-07	26.0	<1	<1	<1	7	45
15-Aug-07	9.2	<1	<1	<1	7.7	38
10-Oct-07	9.4	<1	<1	<1	8.2	39
26-Mar-08	11.0	<1	<1	<1	7.4	36
25-Jun-08	9.3	<1	<1	<1	8.7	37
10-Sep-08	11.0	<1	<1	<1	7.91	34
15-Oct-08	10.0	<1	<1	<1	9.3	37
4-Mar-09	12.0	<1	<1	<1	7.9	34
24-Jun-09	13.0	<1	<1	<1	7.5	37
15-Sep-09	12.0	<1	<1	<1	8.3	48

TW4-5	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
22-Dec-09	8.5	<1	<1	<l< td=""><td>7.5</td><td>41</td></l<>	7.5	41
25-Feb-10	13.0	<1	<1	<1	6.8	43
9-Jun-10	12.0	<1	< İ	<1	7.1	28
11-Aug-10	12.0	<1	<1	<1	7	38
13-Oct-10	11.0	<1	<1	<1	7.2	41
22-Feb-11	10.0	ND	ND	ND	7	34
26-May-11	9.0	ND	ND	ND	7.2	35
17-Aug-11	10.0	ND	ND	ND	7.5	37
7-Dec-11	7.9	ND	ND	ND	6	30
18-Jan-12	7.6	ND	ND	ND	5.8	22
6-Jun-12	8.4	ND	ND	ND	8	39
11-Sep-12	12.0	ND	ND	ND	8.1	37
3-Oct-12	8.0	ND	ND	ND	7.7	38
13-Feb-13	10.8	ND	ND	ND	8.24	34.3
13-Jun-13	11.2	ND	ND	ND	10.7	36.5
5-Sep-13	11.6	ND	ND	ND	7.79	39.1
13-Nov-13	14.4	ND	ND	ND	7.75	41.1
30-Jan-14	12.5	ND	ND	ND	9.16	40.5

TW4-6	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/I)	Methylene Chloride (ng/l)	Nitrate (mg/l)	Chloride (mg/l)
6-Jun-00	0			1-9-1		
2-Sep-00	0					
28-Nov-00	0				ND	
26-Mar-01	0				0.13	
20-Jun-01	0				ND	
20-Sep-01	4				ND	
7-Nov-01	1				ND	
26-Mar-02	0				ND	
21-May-02	0				ND	
12-Sep-02	0				ND	
24-Nov-02	0				ND	
28-Mar-03	0				0.1	
23-Jun-03	0				ND	
12-Sep-03	0	*			ND	
8-Nov-03	0				ND	
29-Mar-04	0				ND	
22-Jun-04	0				ND	
17-Sep-04	0				ND	
17-Nov-04	0				ND	
16-Mar-05	0				0.2	
25-May-05	2.5	NA	NA	NA	0.4	NA
31-Aug-05	10.0	<1	2.8	<1	0.8	NA
1-Dec-05	17.0	<1	1.3	<1	0.9	NA
9-Mar-06	31.0	<1	<1	<1	1.2	31
14-Jun-06	19.0	<1	<1	<1	1	30
20-Jul-06	11.0	<1	<1	<1	0.6	37
8-Nov-06	42.8	<1	<1	<1	1.4	65
28-Feb-07	46.0	<1	<1	<1	1.5	32
27-Jun-07	11.0	<1	<1	<1	0.6	38
15-Aug-07	18.0	<1	<1	<1	0.7	36
10-Oct-07	18.0	<1	<1	<1	0.8	38
26-Mar-08	52.0	<1	<1	<1	1.1	33
25-Jun-08	24.0	<1	<1	<1	0.9	35
10-Sep-08	39.0	<1	<1	<1	1.14	35
15-Oct-08	37.0	<1	<1	<1	1.01	33
11-Mar-09	81.0	<1	<1	<1	2.2	35
24-Jun-09	120	<1	<i< td=""><td><1</td><td>2.7</td><td>37</td></i<>	<1	2.7	37
15-Sep-09	280	<1	<1	<1	5.0	37
22-Dec-09	250	<1	<1	<1	6.1	41
25-Feb-10	1000	<1	<1	<1	1.6	45
10-Jun-10	590	<1	<1	<1	2.5	33
12-Aug-10	630	<1	<1	<1	3.9	31
13-Oct-10	420	<1	<1	<1	4.3	41
23-Feb-11	47	ND	ND	ND	0.7	40

TW4-6	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
26-May-11	10	NĎ	ND	ND	0.3	42
17-Aug-11	16	ND	ND	ND	0.3	39
7-Dec-11	21	ND	ND	ND	0.8	36
18-Jan-12	38	ND	ND	ND	0.7	38
13-Jun-12	4.7	ND	ND	ND	0.2	40
11-Sep-12	6.9	ND	ND	ND	0.1	21
3-Oct-12	9.0	ND	ND	ND	0.2	41
13-Feb-13	6.9	ND	ND	ND	0.154	40.4
13-Jun-13	4.9	ND	ND	ND	0.155	37.9
5-Sep-13	5.9	ND	ND	ND	0.157	40.6
13-Nov-13	5.5	ND	ND	ND	1.52	40.2
29-Jan-14	5.7	ND	ND	ND	0.184	40.6

TW4-7	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
29-Nov-99	256					
15-Mar-00	616					
2-Sep-00	698					
29-Nov-00	684				1.99	
28-Mar-01	747				2.46	
20-Jun-01	1100			y = =	2.65	
20-Sep-01	1200				3.38	
8-Nov-01	1100				2.5	
26-Mar-02	1500				3.76	
23-May-02	1600				3.89	
12-Sep-02	1500				3.18	
24-Nov-02	2300				4.6	
28-Mar-03	1800				4.8	
23-Jun-03	5200				7.6	
12-Sep-03	3600				7.6	
8-Nov-03	4500				7.1	
29-Mar-04	2500				4.63	
22-Jun-04	2900				4.83	
17-Sep-04	3100				5.59	
17-Nov-04	3800				6	
16-Mar-05	3100				5.2	
25-May-05	2700	NA	NA	NA	5.4	NA
31-Aug-05	3100	<10	<10	<10	5.2	NA
1-Dec-05	2500	<50	<50	<50	5.3	NA
9-Mar-06	1900	<50	<50	<50	1	48
14-Jun-06	2200	<50	<50	<50	4.5	47
20-Jul-06	2140	<50	<50	<50	4.7	51
8-Nov-06	2160	1.5	<l< td=""><td><1</td><td>4.6</td><td>49</td></l<>	<1	4.6	49
28-Feb-07	1800	1.1	<1	<1	5	47
27-Jun-07	2600	1.5	<1	<1	5.1	45
14-Aug-07	2300	1.4	<1	<1	4.7	44
10-Oct-07	1900	1.2	<1	<1	4.7	45
26-Mar-08	2200	1.3	<1	<1	4.2	43
25-Jun-08	1800	1.3	<1	<1	4.8	43
10-Sep-08	1600	1.4	<1	<1	4.16	35
15-Oct-08	1900	<2	<2	<2	4.01	40
11-Mar-09	1800	1.2	<1	<1	3.7	35
24-Jun-09	1400	<1	<1	<1	3.8	37
15-Sep-09	1500	1.0	<1	<1	4.1	37

TW4-7	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
29-Dec-09	1300	<1	<1	<1	4.2	37
3-Mar-10	1200	<1	<1	<1	3.8	36
10-Jun-10	1100	<1	<1	<1	3.9	31
18-Aug-10	1500	1.1	<1	<1	3.9	36
13-Oct-10	1100	1.1	<1	<1	4	38
23-Feb-11	1300	ND	ND	ND	3.6	45
1-Jun-11	1200	ND	ND	ND	4	35
18-Aug-11	1200	ND	ND	ND	4.1	37
29-Nov-11	1000	ND	ND	ND	3.8	37
19-Jan-12	1000	ND	ND	ND	3.9	37
14-Jun-12	790	ND	ND	ND	4	41
13-Sep-12	870	ND	ND	ND	3.8	40
4-Oct-12	940	ND	ND	ND	3.8	41
13-Feb-13	1080	3.51	ND	ND	3.9	37.7
18-Jun-13	953	ND	ND	ND	4.04	39.3
12-Sep-13	1040	ND	ND	ND	4.17	36.4
14-Nov-13	1050	ND	ND	ND	4.13	37.2
5-Feb-14	946	5.41	ND	ND	4.24	38.2

TW4-8	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
29-Nov-99	0					
15-Mar-00	21.8					
2-Sep-00	102					
29-Nov-00	107				ND	
26-Mar-01	116				ND	
20-Jun-01	180				ND	
20-Sep-01	180				0.35	-
7-Nov-01	180				ND	
26-Mar-02	190				0.62	
22-May-02	210				0.77	
12-Sep-02	300				ND	
24-Nov-02	450				ND	
28-Mar-03	320				0.8	
23-Jun-03	420				ND	
12-Sep-03	66.0				ND	
8-Nov-03	21.0				0.1	
29-Mar-04	24.0				0.65	
22-Jun-04	110				0.52	
17-Sep-04	120				ND	
17-Nov-04	120				ND	
16-Mar-05	10.0				ND	
25-May-05	<1	NA	NA	NA	0.2	NA
31-Aug-05	1.1	<1	1.7	<1	<0.1	NA
30-Nov-05	<1	<1	<1	<1	<0.1	NA
9-Mar-06	1.3	<1	2.1	<1	0.3	39
14-Jun-06	1.0	<1	1.8	<1	<0.1	37
20-Jul-06	<1	<1	<1	<1	0.1	39
8-Nov-06	<1	<1	<1	<1	<0.1	40
28-Feb-07	2.5	<1	<1	<1	0.7	39
27-Jun-07	2.5	<1	<1	<1	0.2	42
15-Aug-07	1.5	<1	<1	<1	<0.1	42
10-Oct-07	3.5	<1	<1	<1	0.5	43
26-Mar-08	<1	<1	<1	<1	0.1	46
25-Jun-08	<1	<1	<1	<1	< 0.05	45
10-Sep-08	<1	<1	<1	<1	<0.05	39
15-Oct-08	<1	<1	<1	<1	<0.05	44
4-Mar-09	<1	<1	<1	<1	<0.1	42
24-Jun-09	<1	<1	<1	<1	<0.1	44
15-Sep-09	<1	<1	<1	<1	<1	44

TW4-8	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
17-Dec-09	<1	<1	<1	<l< td=""><td><0.1</td><td>51</td></l<>	<0.1	51
24-Feb-10	<1	<1	<1	<l< td=""><td><0.1</td><td>57</td></l<>	<0.1	57
9-Jun-10	<1'	<1	<1	<1	<0.1	42
11-Aug-10	<1	<1	<1	<1	<0.1	45
5-Oct-10	<1	<1	<1	<l< td=""><td><0.1</td><td>46</td></l<>	<0.1	46
16-Feb-11	ND	ND	ND	ND	ND	52
25-May-11	ND	ND	ND	ND	0.1	45
16-Aug-11	ND	ND	ND	ND	0.1	46
7-Dec-11	ND	ND	ND	ND	0.2	45
18-Jan-12	ND	ND	ND	ND	0.3	45
31-May-12	ND	ND	ND	ND	0.2	44
29-Aug-12	ND	ND	ND	ND	0.1	48
3-Oct-12	ND	ND	ND	ND	ND	47
7-Feb-13	ND	ND	ND	ND	0.411	46.6
30-May-13	ND	ND	ND	ND	ND	45.5
5-Sep-13	ND	ND	ND	ND	ND	47.5
7-Nov-13	ND	ND	ND	ND	ND	46.1
23-Jan-14	63.8	ND	ND	ND	0.166	48.5
6-Feb-14	100	ND	ND	ND	0.165	46.6

TW4-9	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
20-Dec-99	4.2	(48/3/		1-8-7		
15-Mar-00	1.9			İ		
2-Sep-00	14.2			i		
29-Nov-00	39.4				ND	
27-Mar-01	43.6				ND	
20-Jun-01	59.0				0.15	
20-Sep-01	19.0				0.4	i
7-Nov-01	49.0			i	0.1	
26-Mar-02	41.0				0.5	1
22-May-02	38.0				0.65	
12-Sep-02	49.0				0.2	
24-Nov-02	51.0				0.6	f
28-Mar-03	34.0			<u> </u>	0.6	
23-Jun-03	33.0				0.8	i e
12-Sep-03	32.0				1.1	
8-Nov-03	46.0				1,1	
29-Mar-04	48.0				0.82	
22-Jun-04	48.0				0.75	
17-Sep-04	39.0				0.81	†
17-Nov-04	26.0				1.2	-
16-Mar-05	3.8				1.3	
25-May-05	1.2	NA	NA	NA	1.3	NA
31-Aug-05	<1	<1	2.9	<1	1.3	NA
1-Dec-05	<1	<1	<1	<1	1.3	NA
9-Mar-06	<1	<1	2.6	<1	1.5	38
14-Jun-06	<1	<1	2.7	<1	1.5	39
20-Jul-06	<1	<1	<1	<1	0.9	41
8-Nov-06	<1	<1	<1	<1	0.7	44
28-Feb-07	<l< td=""><td><1</td><td><1</td><td><1</td><td>0.6</td><td>44</td></l<>	<1	<1	<1	0.6	44
27-Jun-07	21	<1	<1	<1	1.3	42
15-Aug-07	9.5	<1	<1	<1	1.8	38
10-Oct-07	8.7	<1	<1	<1	2	40
26-Mar-08	1.3	<1	<1	<1	2.1	35
25-Jun-08	1.0	<1	<1	<1	2.3	35
10-Sep-08	<1	<1	<1	<1	2.79	28
15-Oct-08	<1	<1	<1	<1	1.99	58
4-Mar-09	<1	<1	<1	<1	2.5	30
24-Jun-09	<1	<1	<1	<1	2.3	30
15-Sep-09	<1	<1	<1	<1	2.5	30

TW4-9	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
17-Dec-09	<1	<1	<1	<1	1.7	37
23-Feb-10	<1	<1	<1	<1	1.7	47
9-Jun-10	<1	<1	<1	<1	1.5	33
11-Aug-10	<1	<1	<1	<1	1.2	40
6-Oct-10	<1	<1	<1	<1	1.8	34
17-Feb-11	ND	ND	ND	ND	1.3	41
25-May-11	ND	ND	ND	ND	3.4	38
16-Aug-11	ND	ND	ND	ND	4	21
7-Dec-11	ND	ND	ND	ND	2.3	38
18-Jan-12	ND	ND	ND	ND	2.3	28
31-May-12	ND	ND	ND	ND	4	23
30-Aug-12	ND	ND	ND	ND	3.9	22
3-Oct-12	ND	ND	ND	ND	3.8	21
7-Feb-13	ND	ND	ND	ND	4.12	20.6
30-May-13	ND	ND	ND	ND	4.49	21.4
5-Sep-13	ND	ND	ND	ND	4.03	22.7
7-Nov-13	ND	ND	ND	ND	4.87	23.6
29-Jan-14	ND	ND	ND	ND	4.36	22

TW4-10	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
21-Jan-02	14					
26-Mar-02	16				0.14	
21-May-02	17				0.11	
12-Sep-02	6				ND	
24-Nov-02	14				ND	
28-Mar-03	29				0.2	
23-Jun-03	110				0.4	
12-Sep-03	74				0.4	
8-Nov-03	75				0.3	
29-Mar-04	22				0.1	
22-Jun-04	32				ND	
17-Sep-04	63				0.46	
17-Nov-04	120				0.4	
16-Mar-05	140				1.6	
25-May-05	62.4	NA	NA	NA	0.8	NA
31-Aug-05	110	<2.5	6.2	<2.5	1.1	NA
1-Dec-05	300	<2.5	<2.5	<2.5	3.3	NA
9-Mar-06	190	<5	<50	<50	2.4	50
14-Jun-06	300	<5	<50	<50	3.5	54
20-Jul-06	504	<5	<50	<50	6.8	61
8-Nov-06	452	<1	1.6	1	5.7	58
28-Feb-07	500	<1	<1	1	7.6	62
27-Jun-07	350	<1	<1	1	5.1	54
15-Aug-07	660	<1	<1	1	7.3	59
10-Oct-07	470	<1	<1	1	6.7	59
26-Mar-08	620	<1	<1	1	7.3	55
25-Jun-08	720	<1	<1	l 1	9.91	58
10-Sep-08	680	<i< td=""><td><l< td=""><td>1</td><td>9.23</td><td>51</td></l<></td></i<>	<l< td=""><td>1</td><td>9.23</td><td>51</td></l<>	1	9.23	51
15-Oct-08	1200	<2	<2	2	10.5	61
11-Mar-09	1100	<i< td=""><td><1</td><td>1</td><td>11.6</td><td>64</td></i<>	<1	1	11.6	64
24-Jun-09	1200	<1	<Ĭ	Ī	9.8	62
15-Sep-09	910	<1	<1	Í	8.1	51
22-Dec-09	300	<1	<1	<1	3.5	51
3-Mar-10	460	<1	<1	<1	5	49
10-Jun-10	220	<1	<1	<1	1.6	42
12-Aug-10	100	<1	<1	<1	0.8	38
13-Oct-10	1100	<1	<1	<1	11	52
23-Feb-11	620	ND	ND	ND	9	62
1-Jun-11	280	ND	ND	ND	3.3	42

TW4-10	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nimate (mg/l).	Chilorate (me/le)
17-Aug-11	180	ND	ND	ND	1.9	41
16-Nov-11	110	ND	ND	ND	1.1	45
19-Jan-12	76	ND	ND	ND	0.9	40
13-Jun-12	79	ND	ND	ND	0.8	46
12-Sep-12	130	ND	ND	ND	1.0	44
3-Oct-12	140	ND	ND	ND	1.6	45
13-Feb-13	154	ND	ND	ND	1.2	49.1
13-Jun-13	486	ND	ND	ND	5.6	51.5
12-Sep-13	1160	ND	ND	ND	13.0	67.9
14-Nov-13	1380	ND	ND	ND	16.0	70.9
5-Feb-14	1260	5.16	ND	ND	16.8	73

TW4-11	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
21-Jan-02	4700					
26-Mar-02	4900				9.6	
22-May-02	5200				9.07	
12-Sep-02	6200				8.84	
24-Nov-02	5800				9.7	Î
28-Mar-03	5100				9.7	
23-Jun-03	5700				9.4	
12-Sep-03	4600				9.9	
8-Nov-03	5200				9.3	
29-Mar-04	5300				9.07	
22-Jun-04	5700				8.74	
17-Sep-04	4800				8.75	
17-Nov-04	5800				9.7	
16-Mar-05	4400				8.7	
25-May-05	3590	NA	NA	NA	10.3	NA
31-Aug-05	4400	<10	<10	<10	9.4	NA
1-Dec-05	4400	<100	<100	<100	9.4	NA
9-Mar-06	4400	<50	<50	<50	9.2	56
14-Jun-06	4300	<50	<50	<50	10	56
20-Jul-06	4080	<50	<50	<50	10	55
8-Nov-06	3660	1.7	2.7	1.3	10	55
28-Feb-07	3500	1.3	<1	1.6	10.1	54
27-Jun-07	3800	1.6	<1	1.1	10.6	53
15-Aug-07	4500	1.7	<1	1.1	10.2	53
10-Oct-07	4400	1.6	<1	1.2	9.8	53
26-Mar-08	340	<1	<1	<1	7.7	63
25-Jun-08	640	<1	<1	<1	7.28	46
10-Sep-08	900	<1	<1	<1	7.93	42
15-Oct-08	1000	<2	<2	<2	9.46	47
11-Mar-09	1100	<1	<1	<1	7.3	49
24-Jun-09	980	<1	<1	<1	6.8	44
15-Sep-09	1000	<1	<1	<1	7	49
29-Dec-09	860	<1	<1	<1	6.6	46
3-Mar-10	820	<Ī	<1	<1	6.8	42
10-Jun-10	820	<1	<1	<1	6.9	40
12-Aug-10	800	<1	<1	<1	6.7	43
13-Oct-10	720	<1	<1	<1	6.4	49
23-Feb-11	1000	ND	ND	ND	6.5	46
1-Jun-11	930	ND	ND	ND	7.3	49

TW4-11	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	AD CASH ACAD TO VISION TO A PARTY.	Chlorae (mg/l)
17-Aug-11	820	ND	ND	ND	7.1	48
16-Nov-11	1500	ND	ND	ND	7.1	46
24-Jan-12	610	ND	ND	ND	6.8	43
13-Jun-12	660	ND	ND	ND	6.7	52
13-Sep-12	740	ND	ND	ND	3	49
4-Oct-12	730	ND	ND	ND	7	50
13-Feb-13	867	3.23	ND	ND	6.83	47.3
18-Jun-13	788	ND	ND	ND	7.42	49.7
12-Sep-13	865	ND	ND	ND	7.8	46.6
13-Nov-13	874	ND	ND	ND	8.01	46.7
5-Feb-14	785	5.19	ND	ND	8.47	48.5

TW4-12	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	2				2.54	
24-Nov-02	0				2.2	
28-Mar-03	0				1.9	
23-Jun-03	0				1.8	
12-Sep-03	0				1.8	
9-Nov-03	0				1.6	
29-Mar-04	0				1.58	
22-Jun-04	0				1.4	
17-Sep-04	0				1.24	
17-Nov-04	0				1.5	
16-Mar-05	0				1.4	
25-May-05	<1	NA	NA	NA	1.6	NA
31-Aug-05	<1	<1	5.8	<1	1.5	NA
1-Dec-05	<1	<1	1.9	<2	1.4	NA
9-Mar-06	<1	<1	2.6	<1	1.3	19
14-Jun-06	<1	<1	1.4	<1	1.4	16
20-Jul-06	<1	<1	<1	<1	1.4	16
8-Nov-06	<1	<1	<1	<1	1.4	16
28-Feb-07	<1	<1	<1	<1	1.5	16
27-Jun-07	<l< td=""><td><1</td><td><1</td><td><1</td><td>1,5</td><td>18</td></l<>	<1	<1	<1	1,5	18
15-Aug-07	<1	<i< td=""><td><1</td><td><1</td><td>1.4</td><td>29</td></i<>	<1	<1	1.4	29
10-Oct-07	<1	<1	<l< td=""><td><1</td><td>1.4</td><td>16</td></l<>	<1	1.4	16
26-Mar-08	<l< td=""><td><1</td><td><l< td=""><td><1</td><td>1.6</td><td>16</td></l<></td></l<>	<1	<l< td=""><td><1</td><td>1.6</td><td>16</td></l<>	<1	1.6	16
25-Jun-08	<1	<1	<1	<1	2.69	19
10-Sep-08	<1	<1	<1	<1	2.65	18
15-Oct-08	<1	<1	<1	<1	2.47	22
4-Mar-09	<l< td=""><td><1</td><td><1</td><td><1</td><td>2.4</td><td>23</td></l<>	<1	<1	<1	2.4	23
24-Jun-09	<1	<1	<l< td=""><td><1</td><td>3.8</td><td>22</td></l<>	<1	3.8	22
15-Sep-09	<1	<1	<1	<1	5.1	22
16-Dec-09	<1	<1	<1	<1	3.6	23
23-Feb-10	<1	<1	<1	<1	4	22
8-Jun-10	<1	<1	<1	<1	11	29
10-Aug-10	<1	<1	<1	<1	9	35
5-Oct-10	<1	<1	<1	<1	8	31
15-Feb-11	ND	ND	ND	ND	6.5	31
25-May-11	ND	ND	ND	ND	7	32
16-Aug-11	ND	ND	ND	ND	6.8	31
15-Nov-11	ND	ND	ND	ND	8	30
17-Jan-12	ND	ND	ND	ND	7.7	28

TW4-12	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
31-May-12	ND	ND	ND	ND	10	34
29-Aug-12	ND	ND	ND	ND	13	39
3-Oct-12	ND	ND	ND	ND	13	39
7-Feb-13	ND	ND	ND	ND	12.6	36.7
29-May-13	ND	ND	ND	ND	14.2	38.6
29-Aug-13	ND	ND	ND	ND	17.4	41.7
6-Nov-13	ND	ND	ND	ND	16.4	41.4
22-Jan-14	ND	ND	ND	ND	18.4	41.6

TW4-13	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	ND				ND	
24-Nov-02	ND				ND	
28-Mar-03	ND				0.2	
23-Jun-03	ND				0.2	
12-Sep-03	ND				ND	
9-Nov-03	ND				0.9	
29-Mar-04	ND	5			0.12	
22-Jun-04	ND				0.17	
17-Sep-04	ND				4.43	
17-Nov-04	ND				4.7	
16-Mar-05	ND				4.2	
25-May-05	<1	NA	NA	NA	4.3	NA
31-Aug-05	<1	<i< td=""><td>3.1</td><td><1</td><td>4.6</td><td>NA</td></i<>	3.1	<1	4.6	NA
1-Dec-05	<1	<1	<1	<1	4.3	NA
9-Mar-06 14-Jun-06	< <	<i <i< td=""><td>1.7</td><td><1 <1</td><td>4.2</td><td>67</td></i<></i 	1.7	<1 <1	4.2	67
20-Jul-06			<1	<1	4.9	65
	<1	<1				
8-Nov-06	<1	<1	<1	<1	0.8	33
28-Feb-07	<1	<1	<1	<1	4	59
27-Jun-07	<1	<1	<1	<1	4.6	59
15-Aug-07	<1	<1	<1	<1	4.4	58
10-Oct-07	<1	<1	<1	<1	4.1	58
26-Mar-08	<1	<1	<1	<1	3.8	54
25-Jun-08	<1	<1	<1	<1	4.24	58
10-Sep-08	<1	<1	<1	<1	4.26	50
15-Oct-08	<1	<1	<1	<1	4.63	58
4-Mar-09					3.7	58
	<1	<1	<1	<1		
24-Jun-09	<1	<1	<1	<1	1.2	57
15-Sep-09	<1	<1	<1	<1	4.7	63
16-Dec-09	<1	<1	<1	<1	4.1	60
24-Feb-10	<1	<1	<1	<1	4.3	53
8-Jun-10	<1	<1	<1	<l< td=""><td>5.2</td><td>52</td></l<>	5.2	52
10-Aug-10	<1	<1	<1	<1	5.6	55
5-Oct-10	<1	<1	<İ	<1	5.8	55
15-Feb-11	ND	ND	ND	ND	5.5	60
25-May-11	ND	ND	ND	ND	5.4	56
16-Aug-11	ND	ND	ND	ND	5.2	60
15-Nov-11	ND	ND	ND	ND	5.9	54
17-Jan-12	ND	ND	ND	ND	5.5	55
31-May-12	ND	ND	ND	ND	6	59
29-Aug-12	ND	ND	ND	ND	6.2	60
3-Oct-12	ND	ND	ND	ND	5.9	60
7-Feb-13	ND	ND	ND	ND	6.31	59.3

TW4-13	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
29-May-13	ND	ND	ND	ND	6.84	56
29-Aug-13	ND	ND	ND	ND	7.16	63.5
6-Nov-13	ND	ND	ND	ND	6.48	58.5
22-Jan-14	ND	ND	ND	ND	7.09	63.1

TW4-14	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
8-Nov-06	<1	<l< td=""><td><1</td><td><1</td><td>2.4</td><td>37</td></l<>	<1	<1	2.4	37
28-Feb-07	<1	<1	<1	<1	2.3	38
27-Jun-07	<1	<1	<1	<1	1.4	38
15-Aug-07	<1	<1	<1	<1	1.1	36
10-Oct-07	<1	<1	<1	<1	0.8	36
26-Mar-08	<1	<1	<1	<1	0.04	57
25-Jun-08	<1	<1	<1	<1	1.56	35
10-Sep-08	<1	<1	<1	<l< td=""><td>1.34</td><td>34</td></l<>	1.34	34
15-Oct-08	<1	<1	<1	<1	0.76	40
4-Mar-09	<1	<1	<1	<1	1.6	35
24-Jun-09	<1	<1	<1	<1	1.4	36
15-Sep-09	<1	<1	<1	<1	1.5	38
16-Dec-09	<1	<1	<1	<1	1.4	34
3-Mar-10	<1	<1	<1	< Ì	2.5	33
8-Jun-10	<1	<1	<1	<1	2.9	49
10-Aug-10	<1	<1	<1	<1	2.8	35
6-Oct-10	<1	<1	<1	<1	2.9	29
15-Feb-11	ND	ND	ND	ND	1.8	25
16-Aug-11	ND	ND	ND	ND	2.6	33
15-Nov-11	ND	ND	ND	ND	1.7	15
17-Jan-12	ND	ND	ND	ND	1.9	20
31-May-12	ND	ND	ND	ND	3.3	35
29-Aug-12	ND	ND	ND	ND	3.9	37
3-Oct-12	ND	ND	ND	ND	4.2	37
7-Feb-13	ND	ND	ND	ND	4.63	35.2
30-May-13	ND	ND	ND	ND	4.37	38.6
29-Aug-13	ND	ND	ND	ND	4.51	37.6
6-Nov-13	ND	ND	ND	ND	4.81	36.5
22-Jan-14	ND	ND	ND	ND	5.92	35.5

MW-26	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	3				ND	
24-Nov-02	0				ND	
28-Mar-03	0				0.1	
23-Jun-03	7800				14.5	
15-Aug-03	7400				16.8	
12-Sep-03	2500				2.7	
25-Sep-03	2600				2.5	
29-Oct-03	3100				3.1	
8-Nov-03	3000				2.8	
29-Mar-04	NA				NA	
22-Jun-04	NA				NA	
17-Sep-04	1400				0.53	
17-Nov-04	300				0.2	
16-Mar-05	310				0.3	
30-Mar-05	230				0.2	
25-May-05	442	NA	NA	NA	0.2	NA
31-Aug-05	960	<5	5.4	<5	0.2	NA
1-Dec-05	1000	<50	<50	<50	0.3	NA
9-Mar-06	1100	<50	<50	<50	0.2	52
14-Jun-06	830	<50	<50	<50	0.2	52
20-Jul-06	2170	<50	<50	<50	1.4	65
8-Nov-06	282	<1	<1	2.8	0.3	54
28-Feb-07	570	<1	<1	5.5	0.5	56
27-Jun-07	300	<1	<1	13	0.4	49
15-Aug-07	1400	<1	<1	36	1	57
10-Oct-07	2000	<1	<1	14	0.6	57
26-Mar-08	930	<1	<1	40	0.1	49
25-Jun-08	1300	<1	<1	53	0.56	57
10-Sep-08	630	<1	<1	24	0.24	44
15-Oct-08	1700	<1	<1	100	0.65	64
4-Mar-09	950	<1	<1	51	0.4	49
24-Jun-09	410	<1	<1	12	0.2	48
15-Sep-09	850	<1	<1	30	0.1	46
14-Dec-09	1100	<1	<1	40	2.3	60
17-Feb-10	780	<1	<1	19	0.2	57
9-Jun-10	1900	<1	<1	28	1.1	58
16-Aug-10	2200	<1	<1	21	0.6	49
11-Oct-10	970	<1	<1	6.5	0.7	65
23-Feb-11	450	ND	ND	3.6	0.5	57

MW-26	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Njirede (mg/l)	Chloride r(mg/l)
31-May-11	1800	ND	ND	1.3	0.4	88
17-Aug-11	720	ND	ND	7.2	0.9	58
5-Dec-11	1800	ND	ND	2.9	2	69
7-Feb-12	2400	ND	ND	16	1.7	98
6-Jun-12	3000	ND	ND	21	2.5	73
4-Sep-12	3100	ND	ND	31	2.6	73
4-Oct-12	1200	ND	ND	4	1.8	68
11-Feb-13	2120	ND	ND	9.34	2.27	81.9
5-Jun-13	4030	ND	ND	52.4	2.11	77.9
3-Sep-13	2940	ND	ND	33.2	1.18	60.5
29-Oct-13	1410	ND	ND	4.03	1.38	72.3
27-Jan-14	1400	ND	ND	13.8	0.549	59.4

TW4-16	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	140				ND	
24-Nov-02	200				ND	
28-Mar-03	260				ND	Î
23-Jun-03	370				ND	1
12-Sep-03	350				ND	
8-Nov-03	400				ND	
29-Mar-04	430			11	ND	
22-Jun-04	530				ND	
17-Sep-04	400				ND	
17-Nov-04	350				ND	
16-Mar-05	240				ND	
25-May-05	212	NA	NA	NA	<0.1	NA
31-Aug-05	85	< Î	3.2	43	<0.1	NA
1-Dec-05	14	<2.5	2.6	5.9	1.4	NA
9-Mar-06	39.0	<1	1.1	21	3	60
14-Jun-06	13.0	<1	2.4	8.9	1.9	55
20-Jul-06	5.2	<1	<1	2.7	2.7	60
8-Nov-06	13.6	<1	<1	9.2	5.6	62
28-Feb-07	8.7	<1	<1	6.5	12.3	79
27-Jun-07	2.6	<1	<1	1.8	9.9	75
15-Aug-07	7.1	<1	<1	5.1	5.4	66
10-Oct-07	1.4	<1	<1	<1	4.4	69
26-Mar-08	11.0	<1	<1	26	ND	52
25-Jun-08	<1	<1	<1	<1	1.46	58
10-Sep-08	10	<1	<1	14	10.5	71
15-Oct-08	3.9	<i< td=""><td><1</td><td>6.6</td><td>9.82</td><td>89</td></i<>	<1	6.6	9.82	89
4-Mar-09	<1	<1	<1	<1	9.6	78
24-Jun-09	<1	<i< td=""><td><1</td><td><1</td><td>8.9</td><td>76</td></i<>	<1	<1	8.9	76
15-Sep-09	<1	<1	<1	<1	8.8	79
17-Dec-09	<1	<1	<1	<1	5.2	76
24-Feb-10	<1	<1	<1	<1	4.2	77
9-Jun-10	2.1	<1	<1	<1	4.7	64
24-Aug-10	4.3	<1	<i< td=""><td><1</td><td>4.6</td><td>72</td></i<>	<1	4.6	72
6-Oct-10	3.0	<1	<1	<1	3.3	72
22-Feb-11	15.0	ND	ND =	ND	7	86
26-May-11	16.0	ND	ND	ND	5	81
17-Aug-11	9.2	ND	ND	ND	1.7	63
16-Nov-11	ND	ND	ND	1.4	0.4	38
18-Jan-12	ND	ND	ND	1.7	0.1	48

TW4-16	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
31-May-12	ND	ND	ND	ND	ND	53
30-Aug-12	ND	ND	ND	ND	ND	59
3-Oct-12	ND	ND	ND	3	ND	53
7-Feb-13	ND	ND	ND	3	ND	58.1
30-May-13	ND	ND	ND	4.21	ND	49.8
5-Sep-13	ND	ND	ND	ND	ND	54.4
7-Nov-13	13.4	ND	ND	ND	1.37	56.6
29-Jan-14	6.9	ND	ND	ND	3.16	66.8

MW-32	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	1.6				ND	
24-Nov-02	ND				ND	
28-Mar-03	ND				ND	
23-Jun-03	ND			i i	ND	
12-Sep-03	ND				ND	
8-Nov-03	ND				ND	
29-Mar-04	ND				ND	
22-Jun-04	ND				ND	
17-Sep-04	ND				ND	
17-Nov-04	ND				ND	
16-Mar-05	ND				ND	
30-Mar-05	ND				ND	
25-May-05	<1	NA	NA	NA	<0.1	NA
31-Aug-05	<1	<1	3.2	<1	<0.1	NA
1-Dec-05	<1	<1	<1	<1	<0.1	NA
9-Mar-06	<1	<1	<1	<1	<0.1	32
14-Jun-06	<1	<1	3.5	<1	<0.1	30
20-Jul-06	<1	<1	1.8	<1	<0.1	32
8-Nov-06	<1	<1	1.5	<1	<0.1	31
28-Feb-07	<1	<1	<1	<1	<0.1	32
27-Jun-07	<1	<1	<1	<1	<0.1	32
15-Aug-07	<1	<1	<1	<1	<0.1	31
10-Oct-07	<1	<1	<1	<1	<0.1	32
26-Mar-08	<1	<1	<1	<1	<0.1	31
25-Jun-08	<1	<1	<1	<1	< 0.05	29
10-Sep-08	<1	<1	<1	<1	< 0.05	30
15-Oct-08	<1	<1	<1	<1	< 0.05	26
4-Mar-09	<1	<1	<1	<1	<0.1	30
24-Jun-09	<1	<1	<1	<1	<0.1	31
15-Sep-09	<1	<1	<1	<1	<0.1	33
16-Dec-09	<1	<1	<1	<1	<0.1	34
17-Feb-10	<1	<1	<1	<1	<0.1	38
14-Jun-10	<1	<1	<1	<1	<0.1	32
16-Aug-10	<1	<1	<1	<1	<0.1	28
6-Oct-10	<1	<1	<1	<1	<0.1	24
23-Feb-11	ND	ND	ND	ND	ND	40
25-May-11	ND	ND	ND	ND	ND	31
16-Aug-11	ND	ND	ND	ND	ND	33
6-Dec-11	ND	ND	ND	ND	ND	32

MW-32	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
18-Jan-12	ND	ND	ND	ND	ND	21
4-Jun-12	ND	ND	ND	ND	ND	32
5-Sep-12	ND	ND	ND	ND	ND	33
10-Oct-12	ND	ND	ND	ND	ND	35
13-Feb-13	ND	ND	ND	ND	ND	34.3
18-Jun-13	ND	ND	ND	ND	ND	34.9
4-Sep-13	ND	ND	ND	ND	ND	33
29-Oct-13	ND	ND	ND	ND	ND	35.7
29-Jan-14	ND	ND	ND	ND	ND	34

TW4-18	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	440			, , , , , , , , , , , , , , , , , , ,	1.49	
24-Nov-02	240				13.3	
28-Mar-03	160				13.1	
23-Jun-03	110				19	
12-Sep-03	68.0				19.9	
9-Nov-03	84.0				20.7	
29-Mar-04	90.0				14	
22-Jun-04	82.0				12.2	
17-Sep-04	38.0				14.5	
17-Nov-04	51.0				17.3	
16-Mar-05	38.0				14.1	
25-May-05	29.8	NA	NA	NA	12.9	NA
31-Aug-05	39	<1	2.8	<1	13.3	NA
1-Dec-05	14	<1	1.1	<1	7.3	NA
9-Mar-06	12.0	<1	1.1	<1	5.9	5.9
14-Jun-06	12.0	<1	1.6	<1	4.7	35
20-Jul-06	10.8	<1	2.7	<1	6.1	35
8-Nov-06	139	<1	<1	<1	8.7	34
28-Feb-07	9.2	<1	<1	<1	5.1	30
27-Jun-07	8.0	<1	<1	<1	4.9	28
15-Aug-07	8.9	<1	<1	<1	5	32
10-Oct-07	7.4	<1	<1	<1	4.4	27
26-Mar-08	6.4	<1 "	<1	<1	0.7	23
25-Jun-08	5.7	<1	<1	<1	4.55	23
10-Sep-08	8.0	<1	<1	<1	4.68	26
15-Oct-08	9.4	<1	<1	<1	5,15	30
4-Mar-09	11.0	<1	<1	<1	5.2	29
24-Jun-09	16.0	<1	<1	<1	6.2	30
15-Sep-09	13.0	<1	<1	<1	5.9	26
22-Dec-09	8.2	<1	<1	<1	5.4	30
24-Feb-10	69.0	<1	<1	<1	5.1	41
9-Jun-10	29.0	<1	<1	<1	9	35
12-Aug-10	29.0	<1	<1	<1	9	37
13-Oct-10	30.0	<1	<1	<1	10	50
22-Feb-11	39.0	ND	ND	ND	10	52
26-May-11	26.0	ND	ND	ND	9	36
17-Aug-11	29.0	ND	ND	ND	4.6	23
7-Dec-11	28.0	ND	ND	ND	6.3	23
19-Jan-12	25.0	ND	ND	ND	4.4	18

TW4-18	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
13-Jun-12	24.0	ND	ND	ND	6.6	30
11-Sep-12	38.0	ND	ND	ND	6.6	26
3-Oct-12	30.0	ND	ND	ND	6	27
13-Feb-13	34.9	ND	ND	ND	5.58	23.1
13-Jun-13	37.9	ND	ND	ND	8.86	22.9
5-Sep-13	41.0	ND	ND	ND	12.1	36.2
13-Nov-13	44.3	ND	ND	ND	14.2	37.1
30-Jan-14	38.9	ND	ND	ND	12.8	40.9

TW4-19	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	7700				47.6	
24-Nov-02	5400				42	
28-Mar-03	4200				61.4	
15-May-03	4700				NA	
23-Jun-03	4500				11.4	
15-Jul-03	2400				6.8	
15-Aug-03	2600				4	
12-Sep-03	2500				5.7	
25-Sep-03	4600				9.2	
29-Oct-03	4600				7.7	
9-Nov-03	2600				4.8	1
29-Mar-04	NA				NA	
22-Jun-04	NA				NA	1
16-Aug-04	7100				9.91	
17-Sep-04	2600				4.5	
17-Nov-04	1800				3.6	
16-Mar-05	2200				5.3	
25-May-05	1200				5.7	
31-Aug-05	1400	<5	<5	<5	4.6	NA
1-Dec-05	2800	<50	<50	<50	<0.1	NA
9-Mar-06	1200	<50	<50	<50	4	86
14-Jun-06	1100	<50	<50	<50	5.2	116
20-Jul-06	1120	<50	<50	<50	4.3	123
8-Nov-06	1050	1.6	2.6	<1	4.6	134
28-Feb-07	1200	1.3	<1	<1	4	133
27-Jun-07	1800				2.3	
15-Aug-07	1100	1.9	<1	<1	4.1	129
10-Oct-07	1100	1.9	<1	<1	4	132
26-Mar-08	1800	2.9	<1	<1	2.2	131
25-Jun-08	1000	l i	<Ī	<1	2.81	128
10-Sep-08	3600	8.6	<1	<1	36.2	113
15-Oct-08	4200	12	<1	<1	47.8	124
4-Mar-09	1100	1.2	<1	<1	3.2	127
24-Jun-09	990	1.2	<1	<l< td=""><td>2.4</td><td>132</td></l<>	2.4	132
15-Sep-09	6600	15	<1	<1	0.1	43
14-Dec-09	4700	16	<1	<1	26.7	124
17-Feb-10	940	1.3	<1	<1	2	144
9-Jun-10	1800	4.2	<1	<1	4.4	132
16-Aug-10	2000	4.9	<1	<1	5.9	142

TW4-19	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
11-Oct-10	1200	1.3	<1	<1	2.7	146
17-Feb-11	3400	17	ND	ND	17	135
7-Jun-11	4000	8.3	ND	ND	12	148
17-Aug-11	970	2.1	ND	ND	3	148
5-Dec-11	2200	5.4	ND	ND	5	148
23-Jan-12	650	1.5	ND	ND	0.6	138
6-Jun-12	460	1.1	ND	ND	2.4	149
5-Sep-12	950	3.5	ND	ND	2.5	149
3-Oct-12	1500	4	ND	ND	4.1	150
11-Feb-13	4210	5.15	ND	ND	7.99	164
5-Jun-13	2070	5.15	ND	ND	2.95	148
3-Sep-13	8100	20.7	ND	ND	17.6	179
29-Oct-13	942	6.42	ND	ND	4.7	134
27-Jan-14	586	4.05	ND	ND	1.62	134

TW4-20	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
25-May-05	39000	NA	NA	NA	10.1	NA
31-Aug-05	3800	<10	<10	<10	2.9	NA
1-Dec-05	19000	<250	<250	<250	1.8	NA
9-Mar-06	9200	<500	<500	<500	3.8	120
14-Jun-06	61000	<500	<500	<500	9.4	235
20-Jul-06	5300	<1000	<1000	<1000	2.9	134
8-Nov-06	11000	7.1	1.9	2.2	3.5	124
28-Feb-07	4400	3.1	<1	1.1	4.2	124
27-Jun-07	1800	2.2	<1	<1	2.3	112
15-Aug-07	5200	3.5	<1	1.8	2.1	117
10-Oct-07	9000	6.8	<1	1.9	5.6	170
26-Mar-08	13000	9	<1	1.5	0.9	132
25-Jun-08	30000	13	<i< td=""><td>1.2</td><td>7.96</td><td>191</td></i<>	1.2	7.96	191
10-Sep-08	21000	15	<1	3.7	4.44	156
15-Oct-08	NA	NA	NA	NA	5.51	166
4-Mar-09	8200	5.7	<1	5.2	5.1	164
24-Jun-09	6800	4.9	<2	4.2	2.9	164
15-Sep-09	13000	8.4	<2	4.4	3.3	153
14-Dec-09	15000	14	<1	3	5.3	187
17-Feb-10	3500	2.7	<1	3.2	2	179
14-Jun-10	18000	11	<1	3.7	5.6	200
16-Aug-10	15000	12	<1	2.2	5.3	196
11-Oct-10	24000	20	<1	5.5	4.6	203
23-Feb-11	31000	27	ND	19	4.4	220
1-Jun-11	8100	10	ND	2.1	4.8	177
17-Aug-11	6800	7.3	ND	3.1	6.5	207
16-Nov-11	7900	7.2	ND	2.5	4.2	186
23-Jan-12	11000	10	ND	1.3	7.9	207
6-Jun-12	36000	33	ND	ND	11	262
4-Sep-12	13000	26	ND	ND	10.8	289
3-Oct-12	19000	22	ND	ND	11	302
11-Feb-13	18500	19.6	ND	1.21	9.07	252
5-Jun-13	26300	32.5	ND	1.13	9.76	250
3-Sep-13	26800	25.7	ND	2.14	8.65	260
29-Oct-13	15700	17.3	ND	1.37	9.64	272
27-Jan-14	17800	18.4	ND	2.04	7.56	254

TW4-21	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
25-May-05	192	NA	NA	NA	14.6	NA
31-Aug-05	78	<5	<5	<5	10.1	NA
1-Dec-05	86	<1	1.0	<1	9.6	NA
9-Mar-06	120	<2.5	<2.5	<2.5	8.5	347
14-Jun-06	130	<2.5	<2.5	<2.5	10.2	318
20-Jul-06	106	<2.5	<2.5	<2.5	8.9	357
8-Nov-06	139	2	<1	<1	8.7	296
28-Feb-07	160	1.8	<1	<1	8.7	306
27-Jun-07	300	5.8	<1	<l< td=""><td>8.6</td><td>327</td></l<>	8.6	327
15-Aug-07	140	<1	<1	<1	8.6	300
10-Oct-07	120	<1	<1	<1	8.3	288
26-Mar-08	380	7	<1	<1	14.3	331
25-Jun-08	160	1.7	<1	<1	8.81	271
10-Sep-08	120	1.6	<1	<1	7.57	244
15-Oct-08	170	2	<1	<2	8.00	284
11-Mar-09	180	<1	<1	<1	8.3	279
24-Jun-09	200	<1	<1	<1	8.1	291
15-Sep-09	140	<1	<1	<1	9.2	281
22-Dec-09	160	<1	<1	<1	8.4	256
25-Feb-10	170	<1	<1	<1	8.4	228
10-Jun-10	210	1.2	<1	<1	12	266
12-Aug-10	390	9.2	<1	<1	14	278
13-Oct-10	200	1.2	<1	<1	7	210
22-Feb-11	230	1.2	ND	ND	9	303
28-Jun-11	290	4.8	ND	ND	12	290
17-Aug-11	460	6.3	ND	ND	14	287
7-Dec-11	390	6.7	ND	ND	13	276
19-Jan-12	420	6.4	ND	ND	15	228
13-Jun-12	400	5.4	ND	ND	11	285
13-Sep-12	410	6	ND	ND	13	142
4-Oct-12	390	7	ND	ND	14	270
13-Jan-13	282	5.25	ND	ND	11.8	221
18-Jun-13	328	3.49	ND	ND	13.8	243
12-Sep-13	244	2.13	ND	ND	10.3	207
13-Nov-13	204	ND	ND	ND	9	206
5-Feb-14	220	6.23	ND	ND	11.4	200

TW4-22	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
25-May-05	340	NA	NA	NA	18.2	NA
31-Aug-05	290	<5	<5	<5	15.7	NA
1-Dec-05	320	<5	<5	<5	15.1	NA
9-Mar-06	390	<10	<10	<10	15.3	236
14-Jun-06	280	<10	<10	<10	14.3	221
20-Jul-06	864	<10	<10	<10	14.5	221
8-Nov-06	350	<1	1.6	<1	15.9	236
28-Feb-07	440	<1	<1	<1	20.9	347
27-Jun-07	740	<1	<1	<1	19.3	273
15-Aug-07	530	<1	<1	<1	19.3	259
10-Oct-07	440	<1	<1	<1	18.8	238
26-Mar-08	1400	<1	<1	<1	39.1	519
25-Jun-08	1200	<1	<1	<1	41.9	271
10-Sep-08	6300	1.3	<1	<1	38.7	524
15-Oct-08	630	<2	<2	<2	36.3	539
11-Mar-09	390	<1	<1	<1	20.7	177
24-Jun-09	730	<1	<1	<1	20.6	177
15-Sep-09	2300	<1	<1	<1	40.3	391
29-Dec-09	380	<1	<1	<1	17.8	175
3-Mar-10	2200	<1	<1	<1	36.6	427
15-Jun-10	540	<1	<1	<1	19	134
24-Aug-10	340	<1	<1	<1	15	130
13-Oct-10	340	<Ī	<1	<1	16	134
23-Feb-11	1300	ND	ND	ND	18	114
1-Jun-11	210	ND	ND	ND	17	138
17-Aug-11	450	ND	ND	ND	15	120
7-Dec-11	400	ND	ND	ND	19	174
19-Jan-12	200	ND	ND	ND	14	36
13-Jun-12	120	ND	ND	ND	12.8	35
12-Sep-12	940	ND	ND	ND	7	121
4-Oct-12	330	ND	ND	ND	14	130
11-Feb-13	10600	3.24	ND	ND	58	635
5-Jun-13	12500	3.35	ND	ND	50.2	586
3-Sep-13	9640	3.25	ND	ND	29.7	487
29-Oct-13	13300	8.09	ND	ND	45.2	501
27-Jan-14	12100	6.06	ND	2.83	54.6	598

TW4-23	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
27-Jun-07	<1	<1	<1	<1	<0.1	47
15-Aug-07	<1	<1	<1	<1	<0.1	46
10-Oct-07	<1	<1	<1	<i< td=""><td>< 0.1</td><td>43</td></i<>	< 0.1	43
26-Mar-08	<1	<1	<1	<1	<0.1	41
25-Jun-08	<1	<1	<1	<1	< 0.05	41
10-Sep-08	<1	<1	<1	<1	< 0.05	35
15-Oct-08	<2	<2	<2	<2	< 0.05	51
4-Mar-09	<1	<1	<1	<1	<0.1	41
24-Jun-09	<l< td=""><td><1</td><td><1</td><td><1</td><td><0.1</td><td>43</td></l<>	<1	<1	<1	<0.1	43
15-Sep-09	<1	<1	<1	<1	< 0.1	43
16-Dec-09	<1	<1	<1	<1	<0.1	37
24-Feb-10	<1	<1	<1	<1	<0.1	45
8-Jun-10	<1	<1	<1	<1	< 0.1	40
10-Aug-10	<1	<1	<1	<1	<0.1	40
5-Oct-10	<1	<1	<1	<1	< 0.1	34
16-Feb-11	ND	ND	ND	ND	ND	44
25-May-11	ND	ND	ND	ND	ND	44
16-Aug-11	ND	ND	ND	ND	ND	41
15-Nov-11	ND	ND	ND	ND	ND	43
17-Jan-12	ND	ND	ND	ND	ND	40
31-May-12	ND	ND	ND	ND	ND	44
29-Aug-12	ND	ND	ND	ND	ND	46
3-Oct-12	ND	ND	ND	ND	ND	45
7-Feb-13	ND	ND	ND	ND	ND	43.6
30-May-13	ND	ND	ND	ND	0.116	44.7
5-Sep-13	ND	ND	ND	ND	ND	48.0
7-Nov-13	ND	ND	ND	ND	ND	43.0
23-Jan-14	ND	ND	ND	ND	ND	44.6

TW4-24	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
27-Jun-07	2.6	<1	<1	<1	26.1	770
15-Aug-07	2.2	<1	<1	<1	29	791
10-Oct-07	1.5	<1	<1	<1	24.7	692
26-Mar-08	1.5	<1	<1	<1	24.4	740
25-Jun-08	1.4	<1	<1	<1	45.3	834
10-Sep-08	2.9	<1	<1	<1	38.4	1180
15-Oct-08	<2	<2	<2	<2	44.6	1130
4-Mar-09	1.4	<1	<1	<1	30.5	1010
24-Jun-09	1.5	<1	<1	<1	30.4	759
15-Sep-09	1.4	<1	<1	<1	30.7	618
17-Dec-09	1.2	<1	<1	<1	28.3	1080
25-Feb-10	1.3	<1	<1	<1	33.1	896
9-Jun-10	1.7	<1	<1	<1	30	639
24-Aug-10	1.8	<1	<1	<1	31	587
6-Oct-10	1.4	<1	<1	<1	31	522
17-Feb-11	1.8	ND	ND	ND	31	1100
26-May-11	1.1	ND	ND	ND	35	1110
17-Aug-11	1.7	ND	ND	ND	34	967
7-Dec-I1	1.2	ND	ND	ND	35	608
18-Jan-12	ND	ND	ND	ND	37	373
6-Jun-12	ND	ND	ND	ND	37	355
30-Aug-12	1.1	ND	ND	ND	37	489
3-Oct-12	1.0	ND	ND	ND	38	405
11-Feb-13	5.7	ND	ND	ND	35.9	1260
5-Jun-13	17.4	ND	ND	ND	23.7	916
3-Sep-13	21.8	ND	ND	ND	32.6	998
29-Oct-13	32.5	ND	ND	ND	34.6	1030
27-Jan-14	78.5	ND	ND	1.18	31.6	809

TW4-25	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
27-Jun-07	<1	<1	<1	<1	17.1	395
15-Aug-07	<1	<1	<1	<1	16.7	382
10-Oct-07	<1	<1	<1	<1	17	356
26-Mar-08	<1	<1	<1	<1	18.7	374
25-Jun-08	<1	<1	<1	<1	22.1	344
10-Sep-08	<1	<1	<1	<1	18.8	333
15-Oct-08	<2	<2	<2	<2	21.3	366
4-Mar-09	<1	<1	<1	<1	15.3	332
24-Jun-09	<1	<1	<1	<1	15.3	328
15-Sep-09	<1	<1	<1	<1	3.3	328
16-Dec-09	<1	<1	<1	<1	14.2	371
23-Feb-10	<1	<1	<1	<1	14.4	296
8-Jun-10	<1	<1	<1	<1	16	306
10-Aug-10	<1	<1	<1	<1	14	250
5-Oct-10	<1	<1	<1	<1	15	312
16-Feb-11	ND	ND	ND	ND	15	315
25-May-11	ND	ND	ND	ND	16	321
16-Aug-11	ND	ND	ND	ND	16	276
15-Nov-11	ND	ND	ND	ND	16	294
18-Jan-12	ND	ND	ND	ND	16	304
31-May-12	ND	ND	ND	ND	16	287
11-Sep-12	ND	ND	ND	ND	17	334
3-Oct-12	ND	ND	ND	ND	17	338
11-Feb-13	ND	ND	ND	ND	9.04	190
5-Jun-13	ND	ND	ND	ND	5.24	136
3-Sep-13	ND	ND	ND	ND	5.69	119
29-Oct-13	ND	ND	ND	ND	6.1	88.6
27-Jan-14	ND	ND	ND	ND	2.16	85.7

TW4-26	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
15-Jun-10	13	<1	<1	<1	7.9	33
11-Aug-10	5	<1	<1	<1	9	17
6-Oct-10	5.4	<1	<1	<1	9.6	22
22-Feb-11	2.0	ND	ND	ND	10	30
26-May-11	2.9	ND	ND	ND	10	15
17-Aug-11	2.8	ND	ND	ND	11	19
7-Dec-11	5.2	ND	ND	ND	10	26
18-Jan-12	7.0	ND	ND	ND	11	17
6-Jun-12	4.1	ND	ND	ND	12	19
11-Sep-12	4.9	ND	ND	ND	9	19
3-Oct-12	6.0	ND	ND	ND	12	19
7-Feb-13	5.0	ND	ND	ND	12.5	16.6
13-Jun-13	2.1	ND	ND	ND	13.6	14.5
5-Sep-13	2.8	ND	ND	ND	11.7	17.6
7-Nov-13	3.4	ND	ND	ND	15.9	15.9
29-Jan-14	1.4	ND	ND	ND	14.2	16.9

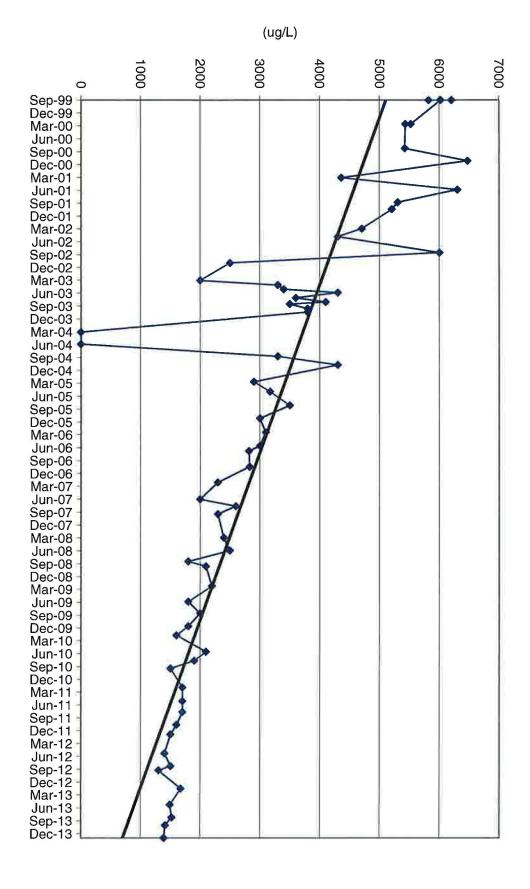
TW4-27	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
24-Jan-12	9	ND	ND	ND	24	11
13-Jun-12	ND	ND	ND	ND	41	17
30-Aug-12	ND	ND	ND	ND	37	21
3-Oct-12	ND	ND	ND	ND	36	18
7-Feb-13	ND	ND	ND	ND	31.2	18.8
30-May-13	ND	ND	ND	ND	29.4	20.3
29-Aug-13	ND	ND	ND	ND	27.2	19
6-Nov-13	ND	ND	ND	ND	29.8	21.8
23-Jan-14	ND	ND	ND	ND	31.3	21.8

TW4-28	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
19-Jun-13	ND	ND	ND	ND	14.9	44.6
29-Aug-13	ND	ND	ND	ND	17.3	45.3
6-Nov-13	ND	ND	ND	ND	16.2	45.2
22-Jan-14	ND	ND	ND	ND	16.9	47.8

TW4-29	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
19-Jun-13	242	ND	ND	ND	4.63	44.8
11-Jul-13	262	ND	ND	ND	3.52	37.7
26-Sep-13	246	ND	ND	ND	4.18	41.4
13-Nov-13	260	ND	ND	ND	4.11	42.5
5-Feb-14	258	ND	ND	ND	4.63	41.9

TW4-30	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
19-Jun-13	ND	ND	ND	ND	0.948	36
29-Aug-13	ND	ND	ND	ND	0.952	36.3
7-Nov-13	ND	ND	ND	ND	1.24	35.9
23-Jan-14	ND	ND	ND	ND	1.36	36

TW4-31	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
19 - Jun-13	ND	ND	ND	ND	1.26	28.4
5-Sep-13	ND	ND	ND	ND	1.1	29.4
7-Nov-13	ND	ND	ND	ND	1.33	28
23-Jan-14	ND	ND	ND	ND	1.32	28.5


TW4-32	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
14-Nov-13	ND	ND	ND	ND	4.26	52.1
22-Jan-14	ND	ND	ND	ND	5.11	54.5

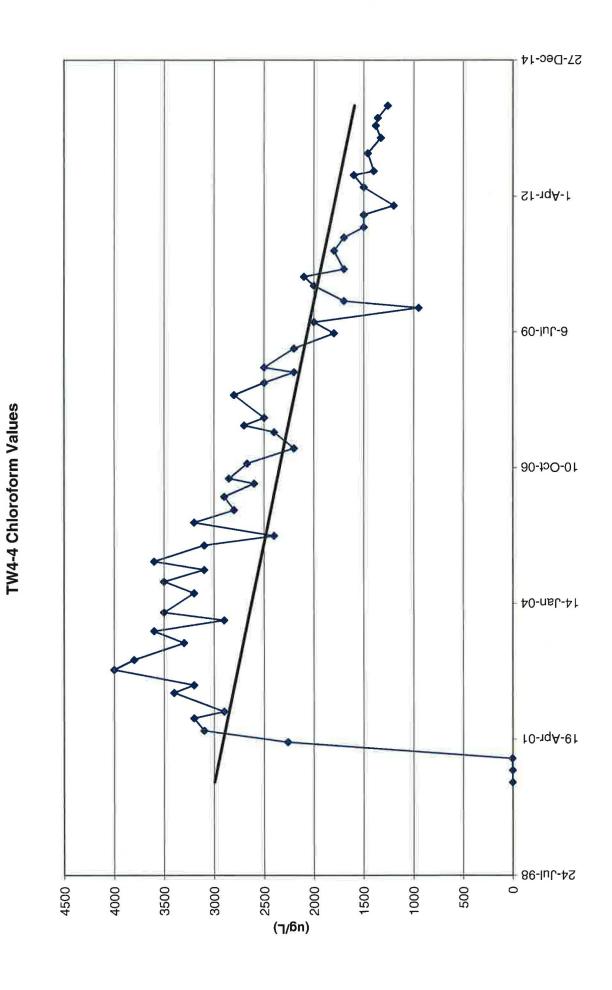
TW4-33	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
14-Nov-13	126	ND	ND	ND	1.82	47.2
30-Jan-14	124	ND	ND	ND	2.56	43.5

TW4-34	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
14-Nov-13	ND	ND	ND	ND	1.64	19.2
23-Jan-14	ND	ND	ND	ND	1.94	20.4

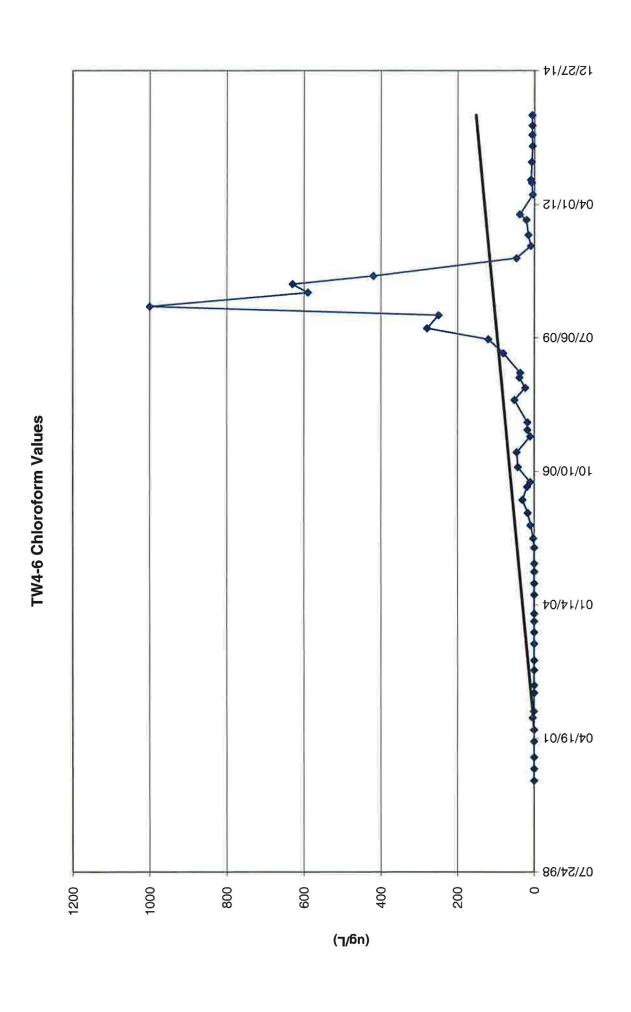
Tab L

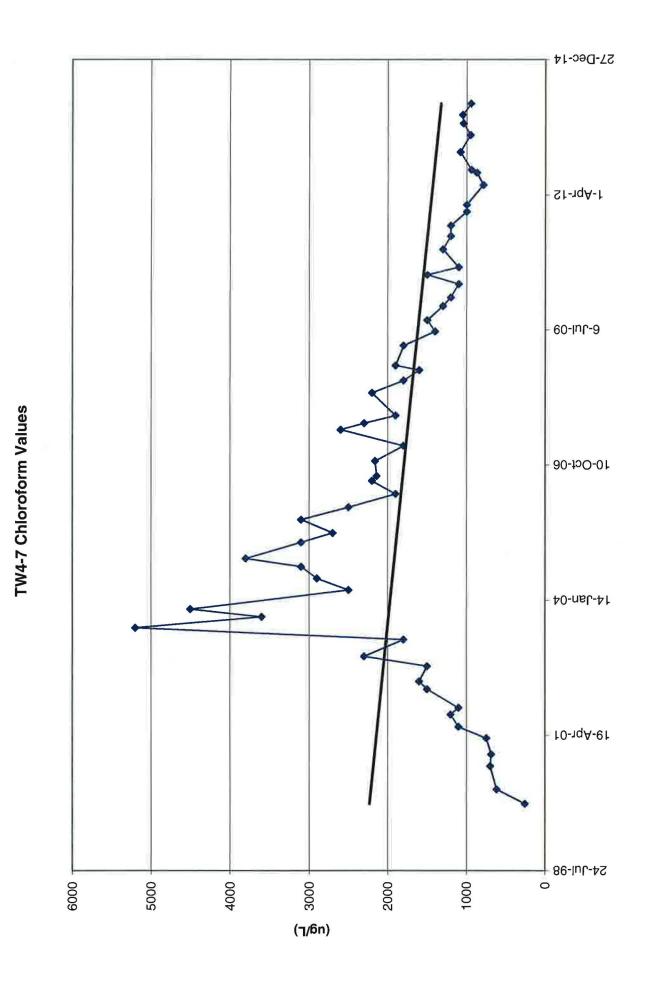

Chloroform Concentration Trend Graphs

27-Dec-14 1-Apr-12 60-InՐ-9 10-Oct-06 14-Jan-04 t0-1qA-et ____ 86-luL-≯2 0009 2000 4000 1000 2000 3000 (n@\F)

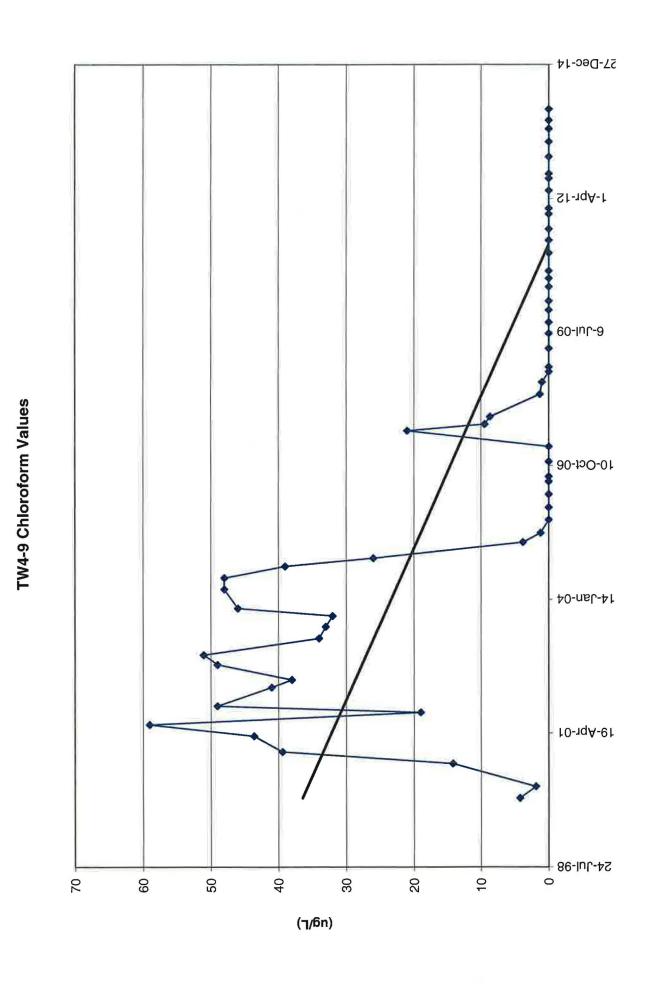

TW4-1 Chloroform Values

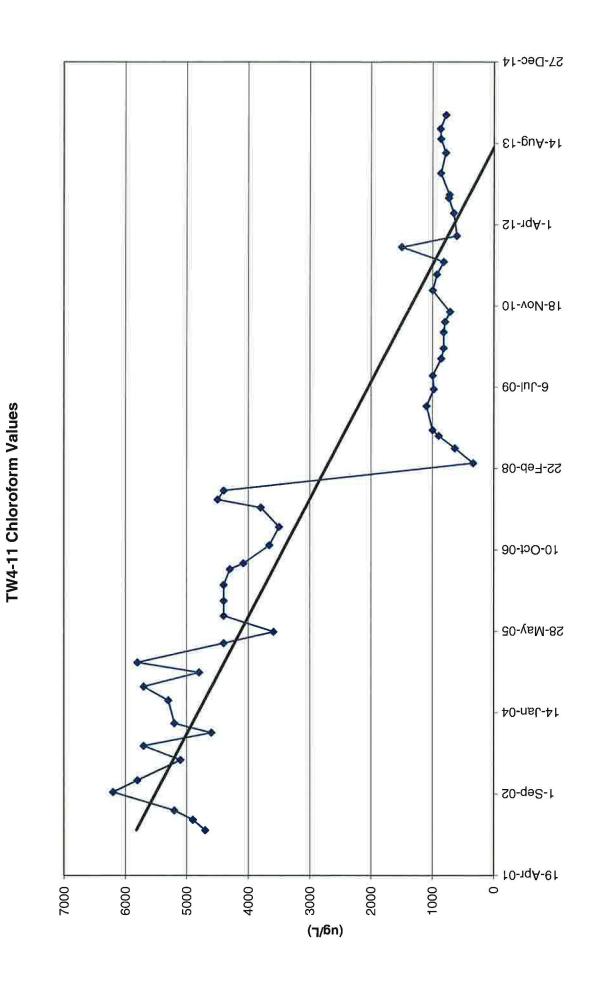
TW4-2 Chloroform Values

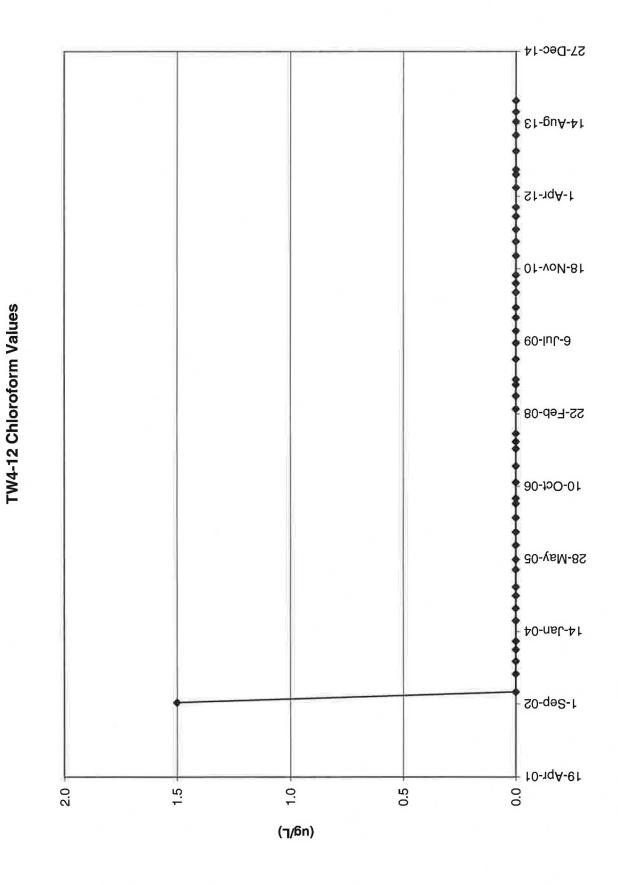


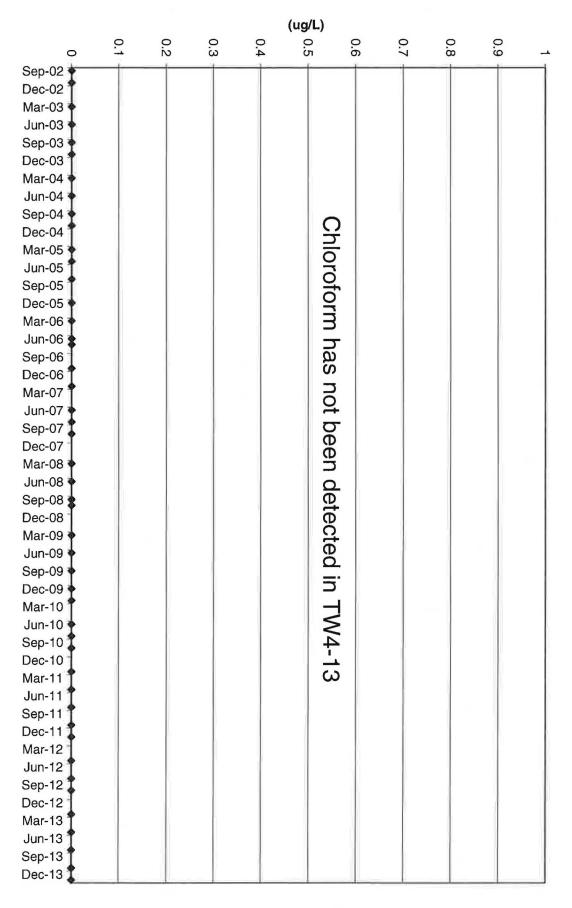

TW4-3 Has been less than the detection limit since March 28, 2003 0 0.5 0. 6.0 0.8 0.7 9.0 0.4 0.3 0.2 0.1 0.0 (ng/L)

TW-4-3 Chloroform Values






27-Dec-14 1-Apr-12 60-lnc-9 10-Oct-06 14-Jan-04 19-Apr-01 † 86-IոՆ**-**⊅Տ 250 20 200 450 400 350 300 200 150 100 0 (ng/ך)

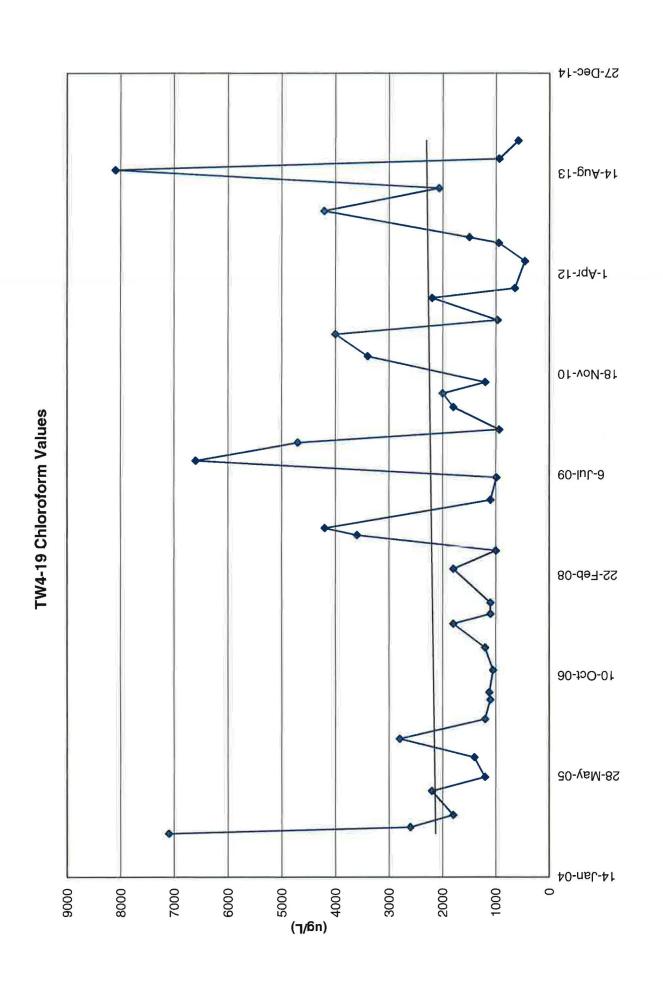

TW4-8 Chloroform Values

TW4-10 Chloroform Values

TW4-13 Chloroform Values

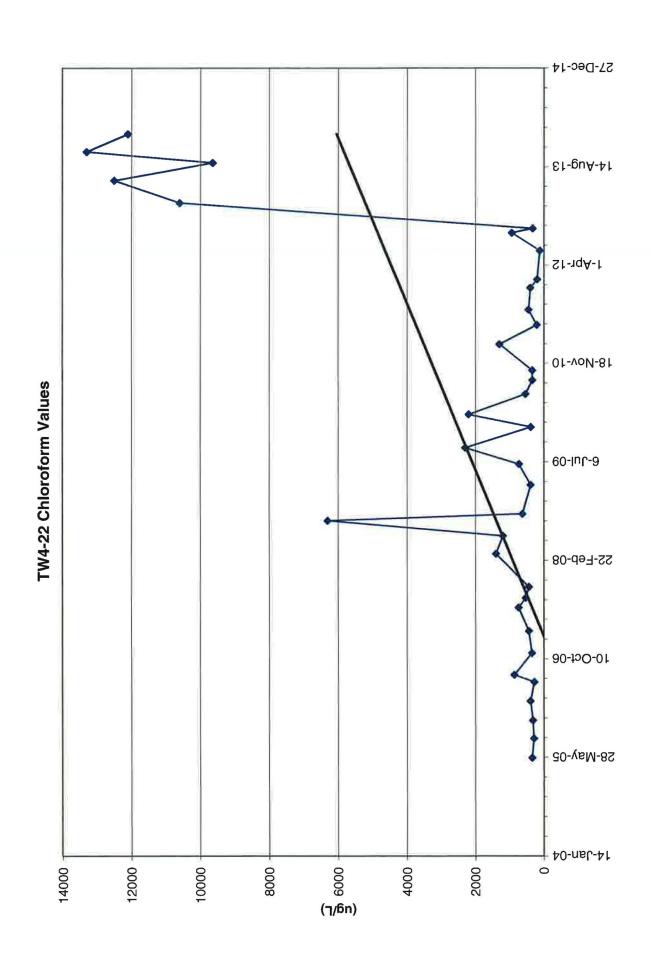
27-Dec-14 €1-guA-41 Chloroform has not been detected in TW4-14 St-1qA-t 01-voN-81 60-Inr-9 22-Feb-08 10-Oct-06 O -1 50-May-05 0 0 0 0 (pn)()

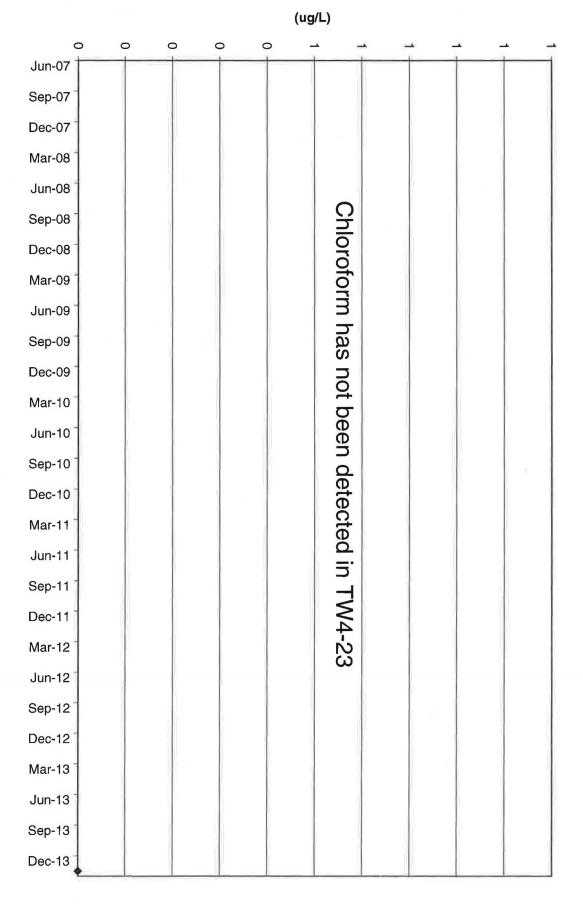
TW4-14 Chloroform Values

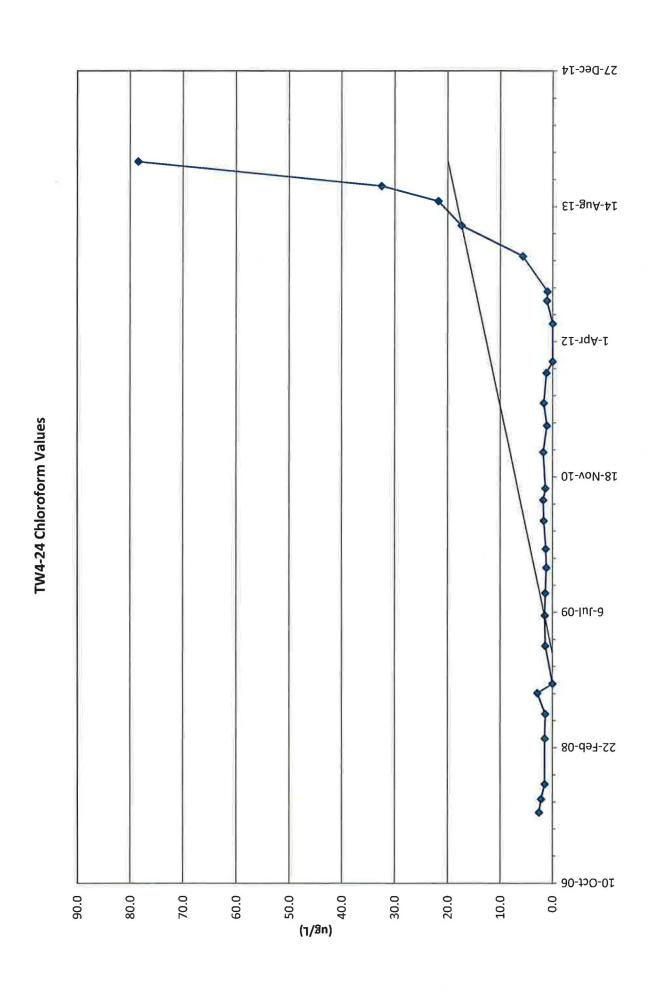

MW-26 Chloroform Values

27-Dec-14 £t-guA-41 1-Apr-12 01-voN-81 60-Inr-9 **TW4-16 Chloroform Values** S2-Feb-08 10-Oct-06 28**-**May-05 14-Jan-04 1-Sep-02 † 10-1qA-61 200 400 300 200 100 (nd/۲)

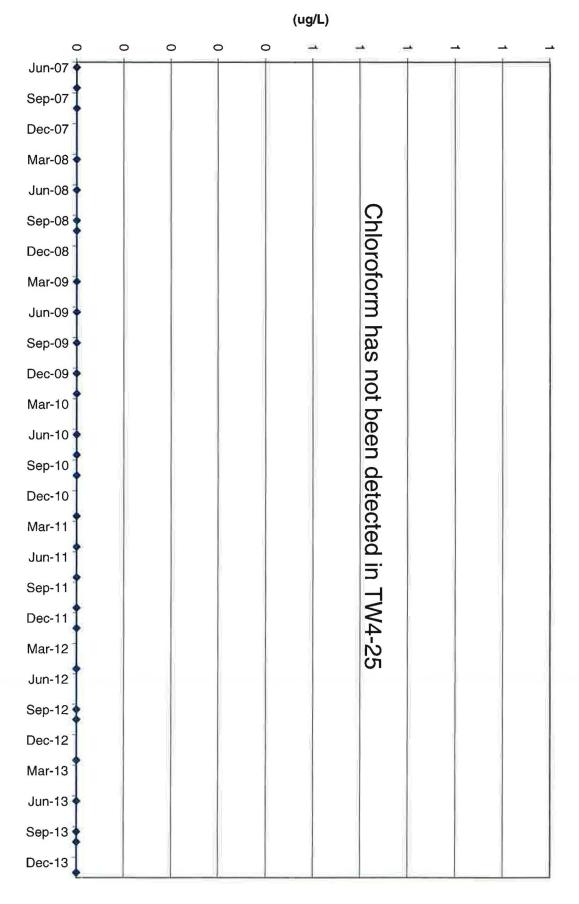
(¬/6n)

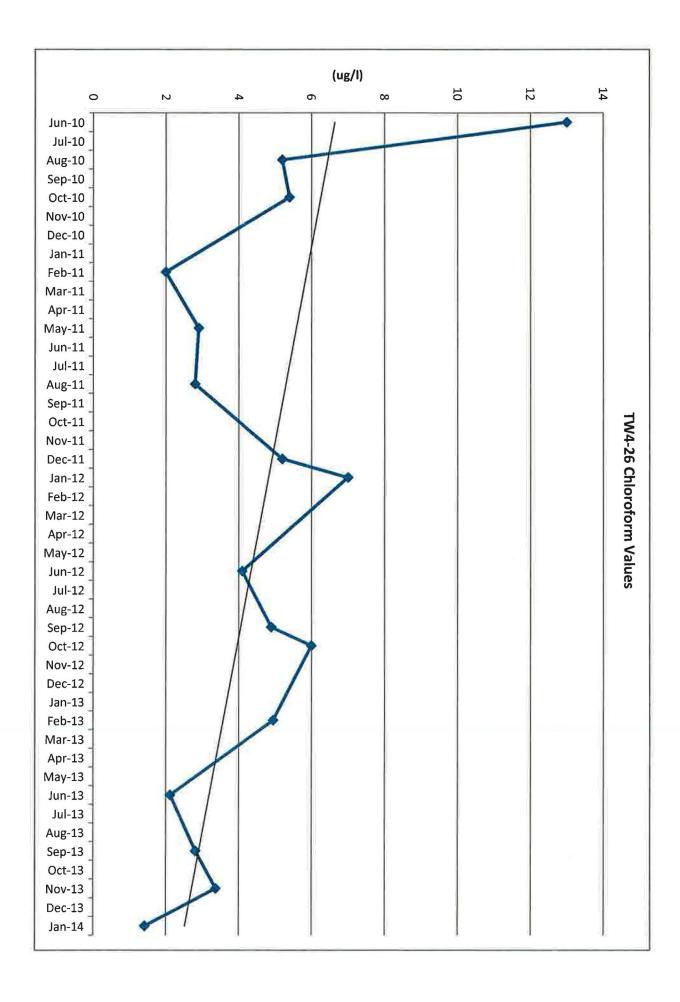

27-Dec-14

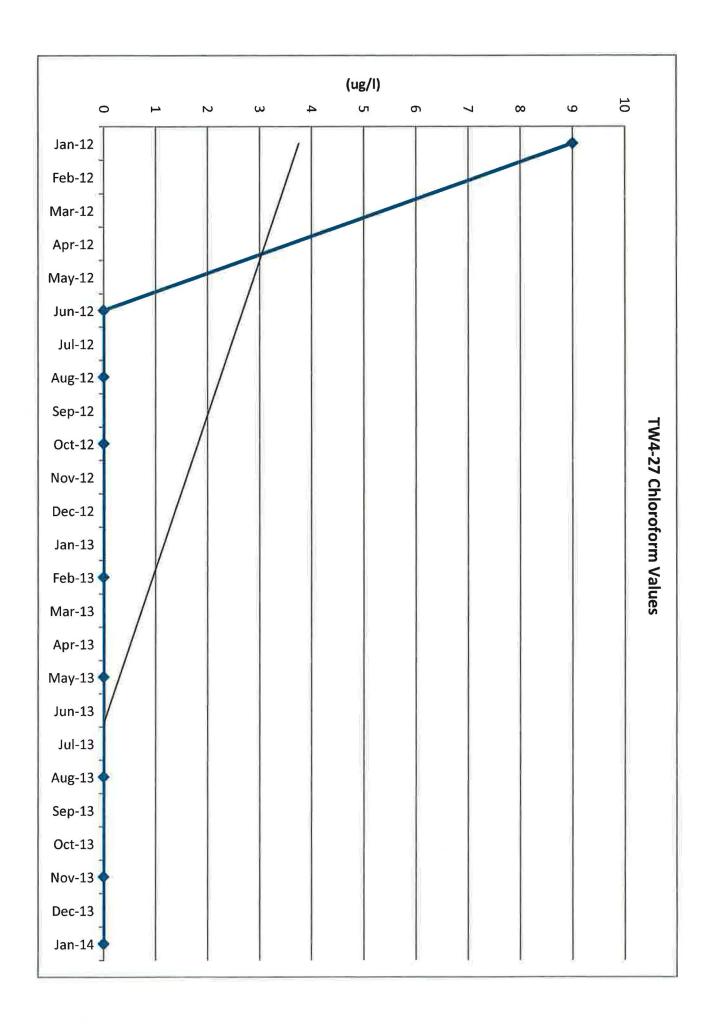

TW4-18 Chloroform Values

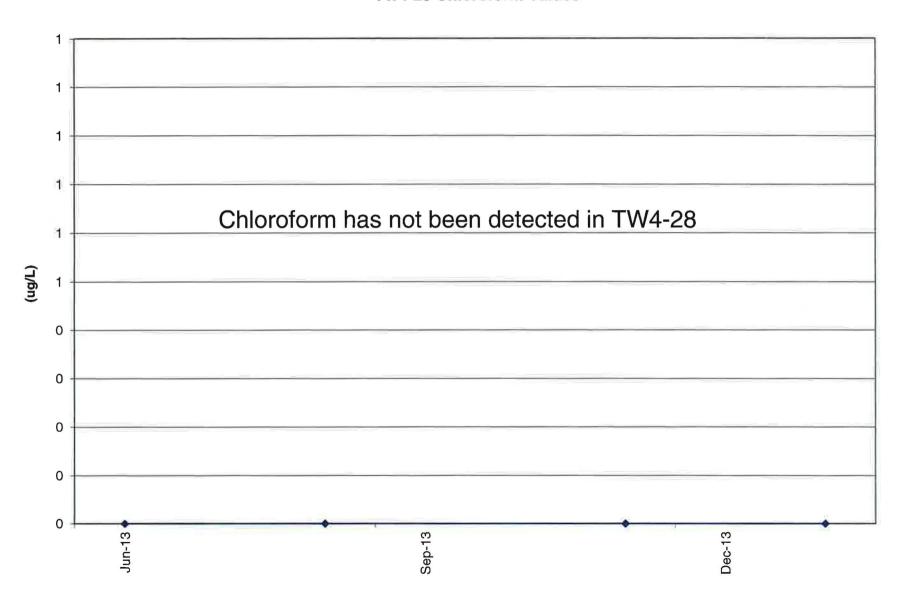


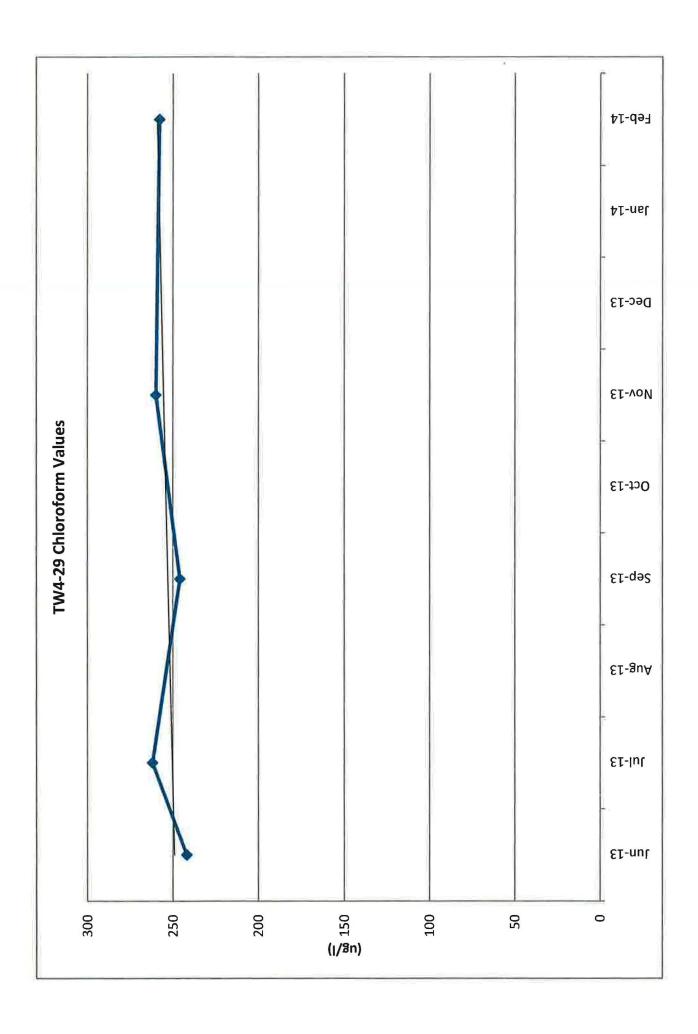
27-Dec-14 £1-guA-41 1-Apr-12 01-voN-81 **TW4-20 Chloroform Values** 60-In**Ր-**9 22-Feb-08 10-Oct-06 28**-**May-05 14-Jan-04 10000 20000 40000 20000 70000 00009 (¬/6n)

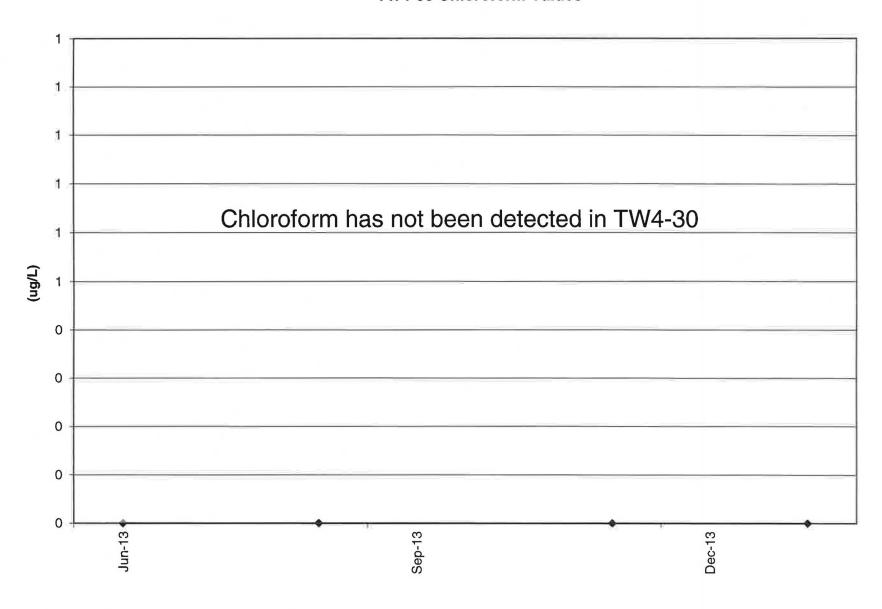

TW4-21 Chloroform Values



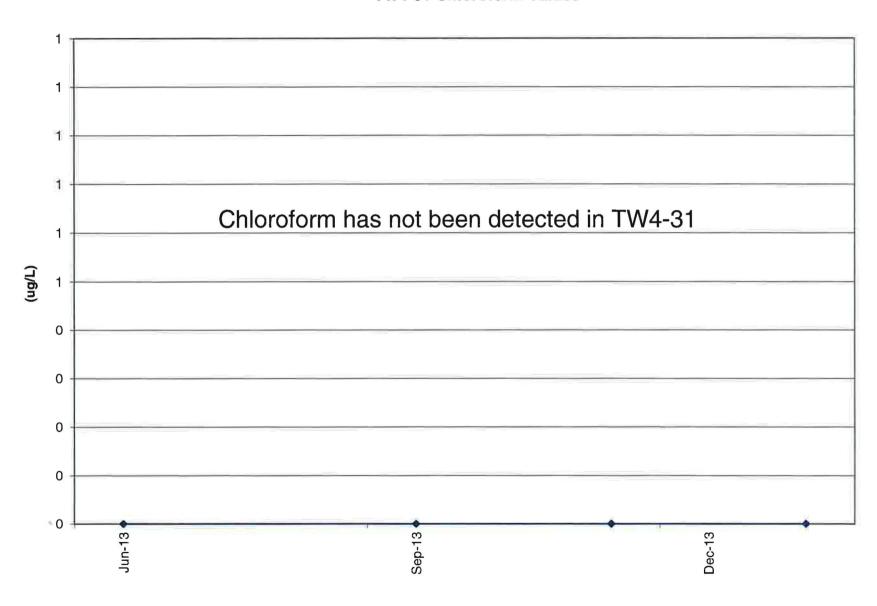


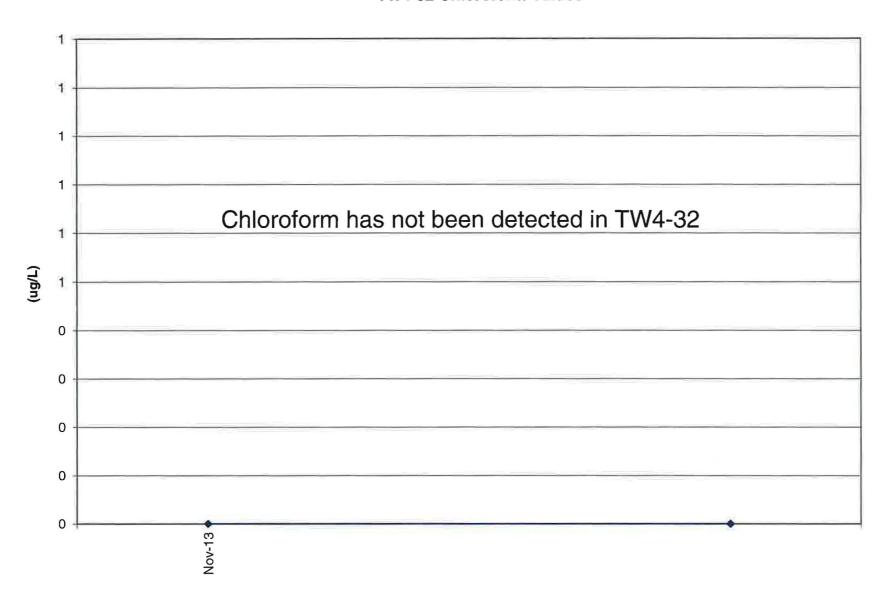




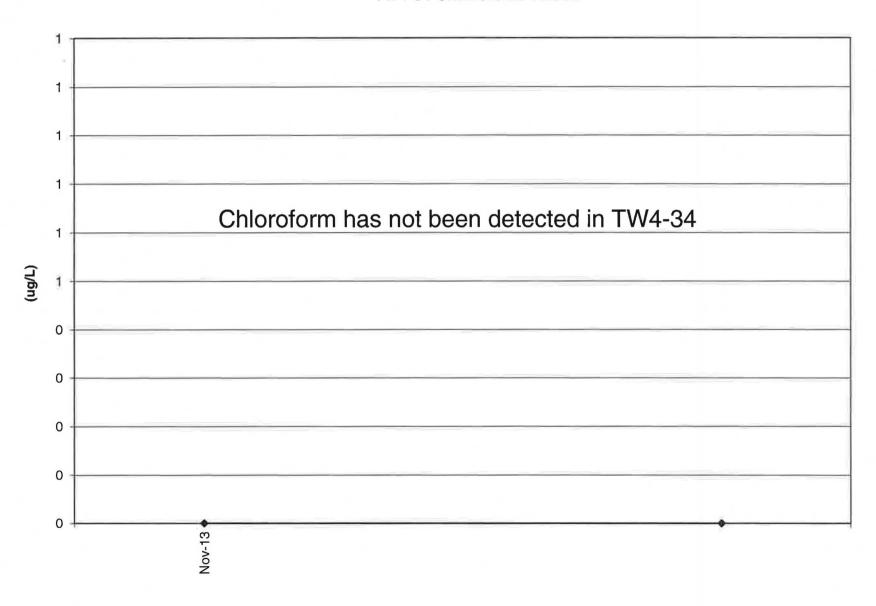


TW4-28 Chloroform Values




TW4-30 Chloroform Values

TW4-31 Chloroform Values


TW4-32 Chloroform Values

Et-voN (ק/6n)

TW4-33 Chloroform Values

TW4-34 Chloroform Values

Tab M

CSV Transmittal Letter

Kathy Weinel

From:

Kathy Weinel

Sent:

Monday, May 19, 2014 7:29 AM

To:

'Rusty Lundberg'

Cc:

'Phillip Goble'; 'Dean Henderson'; Harold Roberts; Dan Hillsten; David Frydenlund; David Turk;

Frank Filas, P.E; Jaime Massey

Subject:

Transmittal of CSV Files White Mesa Mill 2014 Q1 Chloroform Monitoring

Attachments:

1401421-EDD.csv; 1401525-EDD.csv; 1402140-EDD.csv

Dear Mr. Lundberg,

Attached to this e-mail is an electronic copy of laboratory results for chloroform monitoring conducted at the White Mesa Mill during the first quarter of 2014, in Comma Separated Value (CSV) format.

Please contact me at 303-389-4134 if you have any questions on this transmittal.

Yours Truly

Kathy Weinel